scholarly journals Differential Activation of P-TEFb Complexes in the Development of Cardiomyocyte Hypertrophy following Activation of Distinct G Protein-Coupled Receptors

2020 ◽  
Vol 40 (14) ◽  
Author(s):  
Ryan D. Martin ◽  
Yalin Sun ◽  
Sarah MacKinnon ◽  
Luca Cuccia ◽  
Viviane Pagé ◽  
...  

ABSTRACT Pathological cardiac hypertrophy is driven by neurohormonal activation of specific G protein-coupled receptors (GPCRs) in cardiomyocytes and is accompanied by large-scale changes in cardiomyocyte gene expression. These transcriptional changes require activity of positive transcription elongation factor b (P-TEFb), which is recruited to target genes by the bromodomain protein Brd4 or the super elongation complex (SEC). Here, we describe GPCR-specific regulation of these P-TEFb complexes and a novel mechanism for activating Brd4 in primary neonatal rat cardiomyocytes. The SEC was required for the hypertrophic response downstream of either the α1-adrenergic receptor (α1-AR) or the endothelin receptor (ETR). In contrast, Brd4 inhibition selectively impaired the α1-AR response. This was corroborated by the finding that the activation of α1-AR, but not ETR, increased Brd4 occupancy at promoters and superenhancers of hypertrophic genes. Transcriptome analysis demonstrated that the activation of both receptors initiated similar gene expression programs, but that Brd4 inhibition attenuated hypertrophic genes more robustly following α1-AR activation. Finally, we show that protein kinase A (PKA) is required for α1-AR stimulation of Brd4 chromatin occupancy. The differential role of the Brd4/P-TEFb complex in response to distinct GPCR pathways has potential clinical implications, as therapies targeting this complex are currently being explored for heart failure.

2020 ◽  
Author(s):  
Ryan D. Martin ◽  
Yalin Sun ◽  
Sarah MacKinnon ◽  
Luca Cuccia ◽  
Viviane Pagé ◽  
...  

AbstractPathological cardiac hypertrophy is driven by neurohormonal activation of specific G protein-coupled receptors (GPCRs) in cardiomyocytes and is accompanied by large-scale changes in cardiomyocyte gene expression. These transcriptional changes require activity of positive transcription elongation factor b (P-TEFb), which is recruited to target genes by the bromodomain protein Brd4 or the Super Elongation Complex (SEC). Here we describe GPCR-specific regulation of these P-TEFb complexes and a novel mechanism for activating Brd4 in primary neonatal rat cardiomyocytes. The SEC was required for the hypertrophic response downstream of either the α1-adrenergic receptor (α1-AR) or the endothelin receptor (ETR). In contrast, Brd4 inhibition selectively impaired the α1-AR response. This was corroborated by the finding that activation of α1-AR, but not ETR, increased Brd4 occupancy at promoters and super enhancers of hypertrophic genes. Transcriptome analysis demonstrated that activation of both receptors initiated similar gene expression programs, but that Brd4 inhibition attenuated hypertrophic genes more robustly following α1-AR activation. Finally, we show that protein kinase A (PKA) is required for α1-AR stimulation of Brd4 chromatin occupancy. The differential role of the Brd4/P-TEFb complex in response to distinct GPCR pathways has potential clinical implications as therapies targeting this complex are currently being explored for heart failure.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3930-3930 ◽  
Author(s):  
Zachary Hunter ◽  
Evdoxia Hatjiharissi ◽  
Jenny Sun ◽  
Yang Cao ◽  
Hsiuyi Tseng ◽  
...  

Abstract Abstract 3930 Poster Board III-866 Background The use of gene expression profiling (GEP) was used to dissect the molecular profile of Waldenstrom's macroglobulinemia. Bone marrow CD19+ cells from 22 WM patients and 8 healthy donor (HD) were used in these studies, with application of analytics geared toward non-normally distributed data. Patient characteristics were as follows: median age 64 years; bone marrow disease involvement 35%; serum IgM 3,295 mg/dl; beta-2 microglobulin (B2M) 2.7 mg/L; WM ISS Prognostic Score 2. Four patients (18%) previously received rituximab, and 4 (18%) patients had a family history of WM and/or related B-cell disorders. Materials and Methods GEP was performed using the Affymetrix U133 plus 2 platform on CD19+ selected, CD138 depleted bone marrow cells. Array quality checks, normalization, and unsupervised hierarchical clustering were conducted using dChip (Li and Wong 2001 PNAS). These results were then used for further analysis via custom perl scripts that used 10,000 resampled groups to calculate bootstrap percentile based 95% confidence intervals (CI) for both mean and median values. Comparisons between groups were evaluated using approximate permutation testing. To help identify potential biomarkers, absence/presence calls from DCHIP based on the perfect match vs. mismatch comparisons were tabulated for each group and the contingency table resulting from group comparisons were analyzed using a Fisher's exact test. A gene was considered significant if 50% of its probes displayed at least a 2-fold change, mutual exclusion of means/median values and respective 95% CI, and p < 0.01 for both mean and median comparisons. This data was then compared with dChip clustering results and analyzed using Ingenuity Pathway Analysis (Ingenuity Systems). Results Significantly down regulated genes included DLL1 (-13.5 fold, expressed 0% WM vs. 88% HD, P<0.0001), LILRB5 (-13.9 fold expressed in 5% WM vs. 62% HD, P=0.003), MXD1 (-10.3 fold), FOSL2 (-8.8 fold), CXCL12 (-8.0 fold), and ATF3 (-7.5 fold). Up-regulated genes included a number of G-protein coupled receptors including LPAR5 (+7.3 fold), CYSLTR1 (+6.8 fold), and GPER (+16 fold). Other genes of interest included TLR9 (+3.9 fold), TLR10 (+2.8 fold), along with several anti-viral proteins including RANSEL (+6.9 fold), OAS1 (+7.8 fold), and OAS2 (+2.3 fold). Subgroup analysis revealed an up regulation of GP5 (+3.5 fold), LHX1 (+3.3 fold), ERG1 (+3.2 fold), FZD1 (+2.6 fold), and EFNB2 (+2.2 fold) in patients with a family history of WM and/or related B-cell disorders. For those with a high ISS score (≥3), we observed differences in WNT5A (+5.04 fold), CXCL12 (+3.5 fold), NOTCH4 (-2.6 fold) and IL2RA (-2.6 fold). Lastly, WM patients previously treated with rituximab displayed increased expression of BTG2 (+2.3 fold), MCL2 (+2.5 fold), and ARMCX2 (+5.5 fold). Conclusions The results of these studies demonstrate differential expression of several novel genes in WM including g protein coupled receptors and genes involved in interferon signaling. Importantly, these studies demonstrate for the first time differential expression of several gene candidates involved in B-cell differentiation that distinguish sporadic versus familial WM. Moreover, GEP revealed a unique profile for patients presenting with poor prognostic disease. Lastly, these studies reveal the up-regulation of 2 tumor suppressor genes, and the anti-apoptotic gene MCL-2 in WM patients treated with rituximab. The findings of these studies therefore have important implications in the pathogenesis, prognostication and treatment of WM. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 2 (1_suppl) ◽  
pp. S154-S161 ◽  
Author(s):  
Djamel Lebeche ◽  
Zhao Bin Kang ◽  
Roger Hajjar

The renin-angiotensin-aldosterone system (RAAS) has been identified as a major contributor to the development of cardiac hypertrophy and the subsequent transition to heart failure. G protein-coupled receptors agonists such as angiotensin II (Ang II), endothelin-1 (ET-1) and phenylephrine (PE) have been implicated in hypertrophic responses in ventricular myocytes through the activation of several families of MAP kinases. In this study we examined the effect of candesartan, an Ang II type 1-(AT1)-receptor antagonist, on cardiac hypertrophy by using cultured neonatal rat cardiomyocytes. Stimulation with Ang II (100 nM), ET-1 (100 nM) or PE (1 µM) induced marked increases in [3H]Leucine incorporation (≥ 50%), compatible with enhanced protein synthesis. The addition of candesartan abrogated the increase in [3H]Leucine incorporation in response not only to Ang II but also to ET-1 and PE. To elucidate the mechanisms involved in this antihypertrophic effect of candesartan, we studied the activation of p38-MAPK, extracellular signal-regulated kinases (ERK1/2) and stress-activated protein kinases (SAPKs). Ang II, ET-1 and PE increased the phosphorylation levels of ERK1/2, p54 SAPK and p46SAPK and p38 in a time-dependent manner. This activation was completely blocked in the case of Ang II by pretreatment with candesartan. ET-1-induced activation of ERKs, SAPKs and p38 was also partially, but significantly, reduced by candesartan. PE-induced activation of SAPKs, but not ERKs and p38, was also reduced by candesartan. These results suggest that the hypertrophic response to ET-1 and PE, along with Ang II, is dependent upon a functioning AT1-receptor and may be mediated by AT 1 activation of the MAP kinases.


2011 ◽  
Vol 392 (12) ◽  
pp. 1123-1134 ◽  
Author(s):  
Christina Khouri ◽  
Anna Dittrich ◽  
Sara Dutton Sackett ◽  
Bernd Denecke ◽  
Christian Trautwein ◽  
...  

AbstractInflammation is the biological response to injurious stimuli. In the initial phase of the inflammatory process, interleukin-6 (IL-6) is the main inducer of acute phase protein expression in the liver. A prolonged acute phase response is characterised by a disturbed glucose homeostasis and elevated levels of IL-6, insulin, and counterregulatory hormones such as glucagon. Several studies deal with the impact of IL-6 on glucagon-dependent gene expression. In contrast, only very little is known about the influence of G-protein-coupled receptors on IL-6 signalling. Therefore, the aim of this study is to elucidate the regulation of IL-6-induced gene expression by glucagon. We could reveal a novel mechanism of negative regulation of IL-6-induced MAP kinase activation by glucagon in primary murine hepatocytes. IL-6-dependent induction of the ERK-dependent target geneTfpi2, coding for a Kunitz-type serine protease inhibitor, was strongly down-regulated by glucagon treatment. Studying the underlying mechanism revealed a redundant action of the signalling molecules exchange protein activated by cyclic AMP (Epac) and protein kinase A. The metabolic hormone glucagon interferes in IL-6-induced gene expression. This observation is indicative for a regulatory role of G-protein-coupled receptors in the IL-6-dependent inflammatory response.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Cameron S Brand ◽  
Valerie P Tan-Sah ◽  
Joan Heller Brown ◽  
Shigeki Miyamoto

G protein coupled receptors can signal downstream through various pathways, including activation of the small G protein RhoA. In cardiomyocytes, RhoA signaling is protective against ischemia/reperfusion injury. We have previously shown that this is mediated through downstream activation of Protein Kinase D (PKD), increased phosphorylation of cofilin, and diminished translocation of pro-apoptotic proteins to the mitochondria (Xiang et al, Sci. Signaling 2013). Mitophagy, a process that removes damaged mitochondria and limits mitochondrial death signaling, has also been suggested to be a cardioprotective response to oxidative stress. A step considered to be preliminary to clearance of damaged mitochondria via mitophagy is mitochondrial fission, and we hypothesized that RhoA signaling increases mitochondrial fission in cardiomyocytes. Constitutively active RhoA expressed in neonatal rat ventricular myocytes (NRVMs) was found to accumulate at the mitochondria. This was associated with an increase in small, fragmented mitochondria as observed by fluorescent confocal microscopy and electron microscopy, indicative of increased mitochondrial fission. The main protein involved in mitochondrial fission, dynamin-related protein 1 (Drp1), translocates from the cytosol to the mitochondria when activated. We used a tagged adenoviral Drp1 construct to determine whether expression of active RhoA changes Drp1 levels at the mitochondria. Mitochondrial Drp1 increased within 12 hours of adenoviral expression of active RhoA. Adenoviral RhoA expression also increased phosphorylation of Drp1 at serine-616 in NRVMs. In summary, we show that in cardiomyocytes, RhoA associates with mitochondria, can increase Drp1 phosphorylation and Drp1 mitochondrial localization, and can induce mitochondrial fission. The relationship between these mitochondrial signaling events and the protein kinases that are involved are currently under investigation. We suggest that G protein coupled receptors that stimulate RhoA can induce Drp1 accumulation and mitochondrial fission, which contributes to their cardioprotective effect.


Sign in / Sign up

Export Citation Format

Share Document