scholarly journals Candesartan abrogates G protein-coupled receptors agonist-induced MAPK activation and cardiac myocyte hypertrophy

2001 ◽  
Vol 2 (1_suppl) ◽  
pp. S154-S161 ◽  
Author(s):  
Djamel Lebeche ◽  
Zhao Bin Kang ◽  
Roger Hajjar

The renin-angiotensin-aldosterone system (RAAS) has been identified as a major contributor to the development of cardiac hypertrophy and the subsequent transition to heart failure. G protein-coupled receptors agonists such as angiotensin II (Ang II), endothelin-1 (ET-1) and phenylephrine (PE) have been implicated in hypertrophic responses in ventricular myocytes through the activation of several families of MAP kinases. In this study we examined the effect of candesartan, an Ang II type 1-(AT1)-receptor antagonist, on cardiac hypertrophy by using cultured neonatal rat cardiomyocytes. Stimulation with Ang II (100 nM), ET-1 (100 nM) or PE (1 µM) induced marked increases in [3H]Leucine incorporation (≥ 50%), compatible with enhanced protein synthesis. The addition of candesartan abrogated the increase in [3H]Leucine incorporation in response not only to Ang II but also to ET-1 and PE. To elucidate the mechanisms involved in this antihypertrophic effect of candesartan, we studied the activation of p38-MAPK, extracellular signal-regulated kinases (ERK1/2) and stress-activated protein kinases (SAPKs). Ang II, ET-1 and PE increased the phosphorylation levels of ERK1/2, p54 SAPK and p46SAPK and p38 in a time-dependent manner. This activation was completely blocked in the case of Ang II by pretreatment with candesartan. ET-1-induced activation of ERKs, SAPKs and p38 was also partially, but significantly, reduced by candesartan. PE-induced activation of SAPKs, but not ERKs and p38, was also reduced by candesartan. These results suggest that the hypertrophic response to ET-1 and PE, along with Ang II, is dependent upon a functioning AT1-receptor and may be mediated by AT 1 activation of the MAP kinases.

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Yanjia Shen ◽  
Ran Yang ◽  
Rui Zhou ◽  
Wendan Lu ◽  
Li Li ◽  
...  

Xiaoxuming decoction (XXMD) is a traditional Chinese herbal medicine (CHM) that is used for the treatment of stroke in China. Stroke injury damages the cerebral vasculature and disrupts the autoregulation of vasoconstriction and vasodilatation, which is crucial for maintaining constant cerebral blood flow (CBF). It has been reported that XXMD exerts a positive effect on cerebral circulation in animal models of stroke. However, the mechanisms underlying the regulatory effect of XXMD on vascular tone, and the interactions among the multiple components of XXMD, remain unclear. In this study, XXMD was found to induce relaxation of the basilar artery rings of rats precontracted by 5-hydroxytryptamine (5-HT) in vitro, in a dose-dependent manner. The modulation of vascular tone and the process of cerebral ischemia are mediated via the interactions between G protein-coupled receptors (GPCRs) and their ligands, including 5-HT, angiotensin II (Ang II), and urotensin II (UII). Thus, the potential synergistic effects of the different components of XXMD on the regulation of vasoconstriction and vasodilation were further investigated by molecular docking based on network pharmacology. We constructed and analyzed a database comprising 963 compounds of XXMD and studied the interactions between five vascular GPCRs (5-HT1A receptor (5-HT1AR), 5-HT1B receptor (5-HT1BR), Ang II type 1 receptor (AT1R), beta 2-adrenergic receptor (β2-AR), and UII receptor (UTR)) and the various herbal constituents of XXMD using molecular docking. By constructing and analyzing the compound-target networks of XXMD, we found that Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, and Paeoniae Radix Alba were the three major herbs that contained a large number of compounds with high docking scores. We additionally observed that several constituents of XXMD, including gallotannin, liquiritin apioside, nariutin, 1,2,3,4,6-pentagalloylglucose, folic acid, and ginsenoside Rb1, targeted multiple vascular GPCRs. Moreover, the interactions between the components of XXMD and the targets related to vascular tone constituted the comprehensive cerebrovascular regulatory function of XXMD and provided a material basis of the vasoregulatory function of XXMD. The study reports the contributions of various components of XXMD to the regulatory effects on vascular tone and provides scientific evidence for the multicomponent and multitargeting characteristics of XXMD.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1525-1525
Author(s):  
Dongjun Li ◽  
Donna S. Woulfe

Abstract Arrestins have been shown to play important roles in G Protein-Coupled Receptor (GPCR) function in many cells, but their roles in platelets remain uncharacterized. While the classical role of arrestins is considered to be the internalization and desensitization of GPCRs, more recent studies suggest that arrestins can serve as scaffolds to recruit phosphatidyl inositol-3 kinases (PI3K)s to Gq-coupled receptors and promote PI3K-dependent signaling. Thrombin stimulates the PI3K-dependent activation of Akt in platelets in a Gq-dependent manner. Therefore, we sought to determine whether arrestins are involved in the PI3K-dependent activation of Akt in platelets. Comparative immunoblots show that of the two non-visual mammalian arrestins, only one, arrestin-2 (β-arrestin-1), is expressed in human and mouse platelets. Immunoprecipitation of arrestin-2 or p85-PI3K from platelet lysates demonstrated that arrestin-2 associates with the p85 subunit of PI3Ka/b in thrombin or ADP-stimulated platelets, but not resting cells. The association can be inhibited by inhibitors of the P2Y12 receptor for ADP, but not by P2Y1 inhibitors. p85-arrestin association is also blocked by inhibitors of src family kinases, as is Akt phosphorylation. To determine whether src family members were part of the p85-arrestin complexes, immunoblots were re-probed with antibodies to src, lyn and fyn. The results show that Lyn is incorporated into thrombin-stimulated arrestin complexes in a P2Y12-dependent manner. To determine whether arrestin-2 is important for Akt phosphorylation in platelets, megakaryocytes differentiated in culture from mouse embryonic stem cells were used as models of platelet signaling, since these cells are amenable to genetic manipulation. Arrestin-2 was inhibited in the cultured megakaryocytes using a siRNA approach, then cells were stimulated with thrombin and Akt phosphorylation was assessed by immunoblotting. Arrestin-2 expression in the cultured megakaryocytes treated with arrestin-2 specific siRNA was suppressed by an average of 53% compared to cells treated with scrambled siRNA, while thrombin-stimulated Akt phosphorylation was suppressed by 98% compared to scrambled siRNA-treated control cells (n=3 experiments, difference is significant, p=.01, unpaired student’s t-test). In conclusion, the results show that arrestin-2, lyn and PI3Kform a tri-molecular complex following stimulation of platelets with ADP or thrombin. Formation of arrestin complexes at activated receptor sites is important for the localized recruitment and src-dependent activation of p85-PI3K, thus promoting activation of Akt by G protein-coupled receptors.


2003 ◽  
Vol 30 (2) ◽  
pp. 117-126 ◽  
Author(s):  
LM Luttrell

A growing body of data supports the conclusion that G protein-coupled receptors can regulate cellular growth and differentiation by controlling the activity of MAP kinases. The activation of heterotrimeric G protein pools initiates a complex network of signals leading to MAP kinase activation that frequently involves cross-talk between G protein-coupled receptors and receptor tyrosine kinases or focal adhesions. The dominant mechanism of MAP kinase activation varies significantly between receptor and cell type. Moreover, the mechanism of MAP kinase activation has a substantial impact on MAP kinase function. Some signals lead to the targeting of activated MAP kinase to specific extranuclear locations, while others activate a MAP kinase pool that is free to translocate to the nucleus and contribute to a mitogenic response.


2012 ◽  
Vol 108 (5) ◽  
pp. 1473-1483 ◽  
Author(s):  
Chao Li ◽  
Xian Xuan Chi ◽  
Wenrui Xie ◽  
J. A. Strong ◽  
J.-M. Zhang ◽  
...  

Previously we demonstrated that sphingosine 1-phosphate receptor 1 (S1PR1) played a prominent, but not exclusive, role in enhancing the excitability of small-diameter sensory neurons, suggesting that other S1PRs can modulate neuronal excitability. To examine the potential role of S1PR2 in regulating neuronal excitability we used the established selective antagonist of S1PR2, JTE-013. Here we report that exposure to JTE-013 alone produced a significant increase in excitability in a time- and concentration-dependent manner in 70–80% of recorded neurons. Internal perfusion of sensory neurons with guanosine 5′- O-(2-thiodiphosphate) (GDP-β-S) via the recording pipette inhibited the sensitization produced by JTE-013 as well as prostaglandin E2. Pretreatment with pertussis toxin or the selective S1PR1 antagonist W146 blocked the sensitization produced by JTE-013. These results indicate that JTE-013 might act as an agonist at other G protein-coupled receptors. In neurons that were sensitized by JTE-013, single-cell RT-PCR studies demonstrated that these neurons did not express the mRNA for S1PR2. In behavioral studies, injection of JTE-013 into the rat's hindpaw produced a significant increase in the mechanical sensitivity in the ipsilateral, but not contralateral, paw. Injection of JTE-013 did not affect the withdrawal latency to thermal stimulation. Thus JTE-013 augments neuronal excitability independently of S1PR2 by unknown mechanisms that may involve activation of other G protein-coupled receptors such as S1PR1. Clearly, further studies are warranted to establish the causal nature of this increased sensitivity, and future studies of neuronal function using JTE-013 should be interpreted with caution.


2021 ◽  
Author(s):  
Shucai Xie ◽  
Xili Jiang ◽  
Desislava Met Doycheva ◽  
Hui Shi ◽  
Peng Jin ◽  
...  

Abstract Background: Hypoxic-ischemic encephalopathy (HIE) is a severe anoxic brain injury that leads to premature mortality or long-term disabilities in infants. Neuroinflammation is a vital contributor to the pathogenic cascade post HIE and a mediator to secondary neuronal death. As a plasma membrane G-protein coupled receptor, GPR39, exhibits anti-inflammatory activity in several diseases. This study aimed to explore the neuroprotective function of GPR39 through inhibition of inflammation post hypoxic-ischemic (HI) injury and to elaborate the contribution of sirtuin 1(SIRT1)/ peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α)/ nuclear factor, erythroid 2 like 2(Nrf2) in G protein-coupled receptor 39 (GPR39)-mediated protection.Methods: A total of 206 10-day old Sprague Dawley rat pups were subjected to HIE or sham surgery. TC-G 1008 was administered intranasally at 1h, 25h, 49h, and 73h post HIE induction. SIRT1 inhibitor EX527, GPR39 CRISPR, and PGC-1α CRISPR were administered to elucidate the underlying mechanisms. Brain infarct area, short-term and long-term neurobehavioral tests, Nissl staining, western blot, and immunofluorescence staining were performed post HIE.Results: The expression of GPR39 and pathway-related proteins, SIRT1、PGC-1α and Nrf2 were increased in a time-dependent manner, peaking at 24 h or 48h post HIE. Intranasal administration of TC-G 1008 reduced the percent infarcted area and improved short-term and long-term neurological deficits. Moreover, TC-G 1008 treatment significantly increased the expression of SIRT1, PGC-1α, Nrf2, IL-6, IL-1β, and TNF-α. GPR39 CRISPR EX527 and PGC-1α CRISPR abolished GPR39’s neuroprotective effects post HIE.Conclusions:TC-G 1008 attenuated neuroinflammation in part via the SIRT1/PGC-1α/Nrf2 pathway in a neonatal rat model of HIE. TC-G 1008 may be a novel therapeutic target for treatment post neonatal HIE injury.


2014 ◽  
Vol 240 (10) ◽  
pp. 1352-1361 ◽  
Author(s):  
Qi Zhang ◽  
Yingying Tan ◽  
Nan Zhang ◽  
Fanrong Yao

Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Cameron S Brand ◽  
Valerie P Tan-Sah ◽  
Joan Heller Brown ◽  
Shigeki Miyamoto

G protein coupled receptors can signal downstream through various pathways, including activation of the small G protein RhoA. In cardiomyocytes, RhoA signaling is protective against ischemia/reperfusion injury. We have previously shown that this is mediated through downstream activation of Protein Kinase D (PKD), increased phosphorylation of cofilin, and diminished translocation of pro-apoptotic proteins to the mitochondria (Xiang et al, Sci. Signaling 2013). Mitophagy, a process that removes damaged mitochondria and limits mitochondrial death signaling, has also been suggested to be a cardioprotective response to oxidative stress. A step considered to be preliminary to clearance of damaged mitochondria via mitophagy is mitochondrial fission, and we hypothesized that RhoA signaling increases mitochondrial fission in cardiomyocytes. Constitutively active RhoA expressed in neonatal rat ventricular myocytes (NRVMs) was found to accumulate at the mitochondria. This was associated with an increase in small, fragmented mitochondria as observed by fluorescent confocal microscopy and electron microscopy, indicative of increased mitochondrial fission. The main protein involved in mitochondrial fission, dynamin-related protein 1 (Drp1), translocates from the cytosol to the mitochondria when activated. We used a tagged adenoviral Drp1 construct to determine whether expression of active RhoA changes Drp1 levels at the mitochondria. Mitochondrial Drp1 increased within 12 hours of adenoviral expression of active RhoA. Adenoviral RhoA expression also increased phosphorylation of Drp1 at serine-616 in NRVMs. In summary, we show that in cardiomyocytes, RhoA associates with mitochondria, can increase Drp1 phosphorylation and Drp1 mitochondrial localization, and can induce mitochondrial fission. The relationship between these mitochondrial signaling events and the protein kinases that are involved are currently under investigation. We suggest that G protein coupled receptors that stimulate RhoA can induce Drp1 accumulation and mitochondrial fission, which contributes to their cardioprotective effect.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 299-307 ◽  
Author(s):  
Danielle Jacques ◽  
Sawsan Sader ◽  
Claudine Perreault ◽  
Dima Abdel-Samad ◽  
Farah Jules ◽  
...  

Neuropeptide Y (NPY), endothelin-1 (ET-1), and angiotensin II (Ang II) are peptides that are known to play many important roles in cardiovascular homeostasis. The physiological actions of these peptides are thought to be primarily mediated by plasma membrane receptors that belong to the G-protein-coupled receptor superfamily. However, there is increasing evidence that suggests the existence of functional G-protein-coupled receptors at the level of the nucleus and that the nucleus could be a cell within a cell. Here, we review our work showing the presence in the nucleus of the NPY Y1 receptor, the ETA and ETB receptors, as well as the AT1 and AT2 receptors and their respective ligands. This work was carried out in 20-week-old fetal human endocardial endothelial cells. Our results demonstrate that nuclear Y1, AT1, and ETA receptors modulate nuclear calcium in these cells.


Sign in / Sign up

Export Citation Format

Share Document