scholarly journals Transcriptional Regulation Is Affected by Subnuclear Targeting of Reporter Plasmids to PML Nuclear Bodies

2006 ◽  
Vol 26 (23) ◽  
pp. 8814-8825 ◽  
Author(s):  
Gregory J. Block ◽  
Christopher H. Eskiw ◽  
Graham Dellaire ◽  
David P. Bazett-Jones

ABSTRACT Whereas the PML protein has been reported to have both transcriptional coactivator and corepressor potential, the contribution of the PML nuclear body (PML NB) itself to transcriptional regulation is not well understood. Here we demonstrate that plasmid DNA artificially tethered to PML or the PML NB-targeting domain of Sp100 is preferentially localized to PML NBs. Using the tethering technique, we targeted a simian virus 40 promoter-driven luciferase reporter plasmid to PML NBs, resulting in the repression of the transgene transcriptional activity. Conversely, the tethering of a cytomegalovirus promoter-containing reporter plasmid resulted in activation. Targeting a minimal eukaryotic promoter did not affect its activity. The expression of targeted promoters could be modulated by altering the cellular concentration of PML NB components, including Sp100 and isoforms of the PML protein. Finally, we demonstrate that ICP0, the promiscuous herpes simplex virus transactivator, increases the level of transcriptional activation of plasmid DNA tethered to the PML NB. We conclude that when PML NB components are artificially tethered to reporter plasmids, the PML NB contributes to the regulation of the tethered DNA in a promoter-dependent manner. Our findings demonstrate that transient transcription assays are sensitive to the subnuclear localization of the transgene plasmid.

2004 ◽  
Vol 298 (1) ◽  
pp. 58-73 ◽  
Author(s):  
Åsne Jul-Larsen ◽  
Therese Visted ◽  
Bård Ove Karlsen ◽  
Christine Hanssen Rinaldo ◽  
Rolf Bjerkvig ◽  
...  

1993 ◽  
Vol 13 (1) ◽  
pp. 533-542 ◽  
Author(s):  
M P Carty ◽  
J Hauser ◽  
A S Levine ◽  
K Dixon

We have used in vitro DNA replication systems from human HeLa cells and monkey CV-1 cells to replicate a UV-damaged simian virus 40-based shuttle vector plasmid, pZ189. We found that replication of the plasmid was inhibited in a UV fluence-dependent manner, but even at UV fluences which caused damage to essentially all of the plasmid molecules some molecules became completely replicated. This replication was accompanied by an increase (up to 15-fold) in the frequency of mutations detected in the supF gene of the plasmid. These mutations were predominantly G:C-->A:T transitions similar to those observed in vivo. Treatment of the UV-irradiated plasmid DNA with Escherichia coli photolyase to reverse pyrimidine cyclobutane dimers (the predominant UV-induced photoproduct) before replication prevented the UV-induced inhibition of replication and reduced the frequency of mutations in supF to background levels. Therefore, the presence of pyrimidine cyclobutane dimers in the plasmid template appears to be responsible for both inhibition of replication and mutation induction. Further analysis of the replication of the UV-damaged plasmid revealed that closed circular replication products were sensitive to T4 endonuclease V (a pyrimidine cyclobutane dimer-specific endonuclease) and that this sensitivity was abolished by treatment of the replicated DNA with E. coli photolyase after replication but before T4 endonuclease treatment. These results demonstrate that these closed circular replication products contain pyrimidine cyclobutane dimers. Density labeling experiments revealed that the majority of plasmid DNA synthesized in vitro in the presence of bromodeoxyuridine triphosphate was hybrid density whether or not the plasmid was treated with UV radiation before replication; therefore, replication of UV-damaged templates appears to occur by the normal semiconservative mechanism. All of these data suggest that replication of UV-damaged templates occurs in vitro as it does in vivo and that this replication results in mutation fixation.


1993 ◽  
Vol 13 (1) ◽  
pp. 533-542
Author(s):  
M P Carty ◽  
J Hauser ◽  
A S Levine ◽  
K Dixon

We have used in vitro DNA replication systems from human HeLa cells and monkey CV-1 cells to replicate a UV-damaged simian virus 40-based shuttle vector plasmid, pZ189. We found that replication of the plasmid was inhibited in a UV fluence-dependent manner, but even at UV fluences which caused damage to essentially all of the plasmid molecules some molecules became completely replicated. This replication was accompanied by an increase (up to 15-fold) in the frequency of mutations detected in the supF gene of the plasmid. These mutations were predominantly G:C-->A:T transitions similar to those observed in vivo. Treatment of the UV-irradiated plasmid DNA with Escherichia coli photolyase to reverse pyrimidine cyclobutane dimers (the predominant UV-induced photoproduct) before replication prevented the UV-induced inhibition of replication and reduced the frequency of mutations in supF to background levels. Therefore, the presence of pyrimidine cyclobutane dimers in the plasmid template appears to be responsible for both inhibition of replication and mutation induction. Further analysis of the replication of the UV-damaged plasmid revealed that closed circular replication products were sensitive to T4 endonuclease V (a pyrimidine cyclobutane dimer-specific endonuclease) and that this sensitivity was abolished by treatment of the replicated DNA with E. coli photolyase after replication but before T4 endonuclease treatment. These results demonstrate that these closed circular replication products contain pyrimidine cyclobutane dimers. Density labeling experiments revealed that the majority of plasmid DNA synthesized in vitro in the presence of bromodeoxyuridine triphosphate was hybrid density whether or not the plasmid was treated with UV radiation before replication; therefore, replication of UV-damaged templates appears to occur by the normal semiconservative mechanism. All of these data suggest that replication of UV-damaged templates occurs in vitro as it does in vivo and that this replication results in mutation fixation.


2002 ◽  
Vol 362 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Rama K. MALLAMPALLI ◽  
Alan J. RYAN ◽  
James L. CARROLL ◽  
Timothy F. OSBORNE ◽  
Christie P. THOMAS

Lipid-deprived mice increase alveolar surfactant disaturated phosphatidylcholine (DSPtdCho) synthesis compared with mice fed a standard diet by increasing expression of CTP:phosphocholine cytidylyltransferase (CCT), the rate-limiting enzyme for DSPtdCho synthesis. We previously observed that lipid deprivation increases mRNA synthesis for CCT [Ryan, McCoy, Mathur, Field and Mallampalli (2000) J. Lipid Res. 41, 1268–1277]. To evaluate regulatory mechanisms for this gene, we cloned the proximal ∼ 1900bp of the 5′ flanking sequence of the murine CCT gene, coupled this to a luciferase reporter, and examined transcriptional regulation in a murine alveolar epithelial type II cell line (MLE-12). The core promoter was localized to a region between −169 and +71bp, which exhibited strong basal activity comparable with the simian virus 40 promoter. The full-length construct, from −1867 to +71, was induced 2–3-fold when cells were cultured in lipoprotein-deficient serum (LPDS), similar to the level of induction of the endogenous CCT gene. By deletional analysis the sterol regulatory element (SRE) was localized within a 240bp region. LPDS activation of the CCT promoter was abolished by mutation of this SRE, and gel mobility-shift assays demonstrated specific binding of recombinant SRE-binding protein to this element within the CCT promoter. These observations indicate that sterol-regulated expression of CCT is mediated by an SRE within its 5′ flanking region.


2002 ◽  
Vol 366 (3) ◽  
pp. 807-816 ◽  
Author(s):  
Sunfa CHENG ◽  
Maria Alexandra ALFONSO-JAUME ◽  
Peter R. MERTENS ◽  
David H. LOVETT

Gelatinase A transcriptional regulation is the consequence of combinatorial interactions with key promoter and enhancer elements identified within this gene. A potent 40bp enhancer response element, RE-1, located in the near 5′ flanking regions of the rat and human gelatinase A genes drives high-level expression in glomerular mesangial cells (MCs). Southwestern-blot analysis of MC nuclear extracts revealed specific interactions of RE-1 with at least four proteins, of which three have been identified as p53, activator protein 2 and the single-stranded DNA-binding factor Y-box protein-1 (YB-1). In the present study, we report the identification of a fourth 17kDa RE-1-binding protein as the rat homologue (nm23-β) of the human nm23-H1 metastasis suppressor gene. Recombinant nm23-β protein bound only the single-stranded forms of the RE-1 sequence. Mutagenesis revealed direct interaction of nm23-β with a repeat sequence, 5′-GGGTTT-3′, shown previously to specifically interact with YB-1 [Mertens, Harendza, Pollock and Lovett (1997) J. Biol. Chem. 272, 22905—22912], and recombinant nm23-β protein competed for single-stranded YB-1 binding. Transient transfection of MC with an nm23-β expression plasmid within the context of a RE-1/simian virus 40 promoter/luciferase reporter yielded a concentration-dependent repression (80—90%) of luciferase activity in MC and Rat1 fibroblasts. A similar pattern of nm23-β repression was demonstrated within the context of the RE-1/homologous gelatinase A promoter. Co-transfection of nm23-β blocked YB-1-mediated activation of transcription and expression of gelatinase A. Nm23-β may be an important physiological regulator of gelatinase A transcription that acts by competitive interference with the single-stranded transactivator YB-1. Gelatinase A is a key mediator of tumour metastasis, suggesting that competitive suppression of transcription by nm23-β (or the human nm23-H1) may be a component of the reduced metastatic capabilities of cells expressing high levels of this protein.


1988 ◽  
Vol 8 (3) ◽  
pp. 1301-1308 ◽  
Author(s):  
T Enver ◽  
A C Brewer ◽  
R K Patient

Transcriptional activation of the Xenopus laevis beta-globin gene requires the synergistic action of the simian virus 40 enhancer and DNA replication in DEAE-dextran-mediated HeLa cell transfections. Replication does not act through covalent modification of the template, since its requirement was not obviated by the prior replication of the transfected DNA in eucaryotic cells. Transfection of DNA over a 100-fold range demonstrates that replication does not contribute to gene activation simply increasing template copy number. Furthermore, in cotransfections of replicating and nonreplicating constructs, only replicating templates were transcribed. Replication is not simply a requirement of chromatin assembly, since even unreplicated templates generated nucleosomal ladders. Stimulation of beta-globin transcription by DNA replication, though less marked, was also observed in calcium phosphate transfections. We interpret these results as revealing a dynamic role for replication in gene activation.


1990 ◽  
Vol 10 (12) ◽  
pp. 6586-6595 ◽  
Author(s):  
P A Hamel ◽  
B L Cohen ◽  
L M Sorce ◽  
B L Gallie ◽  
R A Phillips

With the murine retinoblastoma (RB) cDNA, a series of RB mutants were expressed in COS-1 cells and the pRB products were assessed for their ability (i) to bind to large T antigen (large T), (ii) to become modified by phosphorylation, and (iii) to localize in the nucleus. All point mutations and deletions introduced into regions previously defined as contributing to binding to large T abolished pRB-large T complex formation and prevented hyperphosphorylation of the RB protein. In contrast, a series of deletions 5' to these sites did not interfere with binding to large T. While some of the 5' deletion mutants were clearly phosphorylated in a cell cycle-dependent manner, one, delta Pvu, failed to be phosphorylated depsite binding to large T. pRB with mutations created at three putative p34cdc2 phosphorylation sites in the N-terminal region behaved similarly to wild-type pRB, whereas the construct delta P5-6-7-8, mutated at four serine residues C terminal to the large T-binding site, failed to become hyperphosphorylated despite retaining the ability to bind large T. All of the mutants described were also found to localize in the nucleus. These results demonstrate that the domains in pRB responsible for binding to large T are distinct from those recognized by the relevant pRB-specific kinase(s) and/or those which contain cell cycle-dependent phosphorylation sites. Furthermore, these data are consistent with a model in which cell cycle-dependent phosphorylation of pRB requires complex formation with other cellular proteins.


1986 ◽  
Vol 6 (4) ◽  
pp. 1032-1043
Author(s):  
K Sato ◽  
R Ito ◽  
K H Baek ◽  
K Agarwal

We located and characterized a downstream transcriptional regulatory element in the human gastrin gene by transferring the gastrin gene 3' fragment, from which the polyadenylation signal sequence was deleted, into the shuttle vector pSCAT10 at a site located immediately downstream from the chloramphenicol acetyltransferase (CAT) gene and upstream from the simian virus 40 polyadenylation region. Study of CAT RNA derived from the hybrid plasmids, indicated regulation of transcription on the gastrin gene fragment. Analysis of deletion mutants generated from the 5' region of the fragment by CAT assay and by S1 nuclease mapping of mRNAs indicated the possible involvement of an oligothymidylate-rich sequence in transcription regulation. Mapping of gastrin gene RNA 3' ends to the 5' side proximal to the oligothymidylate-rich sequence clearly demonstrated that this sequence is a transcriptional terminator element. This unique sequence, interspersed with one or two adenines, which also functions in an orientation-dependent manner, is located 192 nucleotides downstream from the gastrin gene polyadenylation site, and serves as a transcriptional termination signal.


1989 ◽  
Vol 9 (7) ◽  
pp. 2779-2786
Author(s):  
W S Liao ◽  
K T Ma ◽  
C D Woodworth ◽  
L Mengel ◽  
H C Isom

Seven simian virus 40 (SV40)-hepatocyte cell lines were characterized with respect to the ability to express eight liver acute-phase genes. cDNA clones corresponding to albumin, serum amyloid A, alpha 1-acid glycoprotein, haptoglobin, alpha-, beta-, and gamma-fibrinogen, and alpha 1-major-acute-phase protein mRNAs were used in Northern (RNA) or slot blot analyses. In the noninduced state, six of the seven cell lines showed significant (i.e., liverlike) levels of constitutive expression of all genes examined except that expression of haptoglobin mRNA was considerable lower than in the normal liver. To examine whether these immortalized liver cells can respond appropriately to inflammatory mediators, cells were treated with conditioned medium from activated human monocytes or mixed lymphocyte cultures. Results showed that these SV40-hepatocyte cell lines responded to the conditioned media in culture by down-regulating albumin gene expression and up-regulating other acute-phase genes in a time- and dose-dependent manner. These results indicate that the SV40-hepatocytes retained not only the ability to express a number of acute-phase genes but also the ability to respond to external stimuli. The usefulness of these cell lines for analysis of the molecular mechanisms involved in the regulation of these acute-phase genes is discussed.


1992 ◽  
Vol 12 (11) ◽  
pp. 5004-5014
Author(s):  
L C Lutter ◽  
L Judis ◽  
R F Paretti

Recently a model for eukaryotic transcriptional activation has been proposed in which histone hyperacetylation causes release of nucleosomal supercoils, and this unconstrained tension in turn stimulates transcription (V. G. Norton, B. S. Imai, P. Yau, and E. M. Bradbury, Cell 57:449-457, 1989; V. G. Norton, K. W. Marvin, P. Yau, and E. M. Bradbury, J. Biol. Chem. 265:19848-19852, 1990). These studies analyzed the effect of histone hyperacetylation on the change in topological linking number which occurs during nucleosome assembly in vitro. We have tested this model by determining the effect of histone hyperacetylation on the linking number change which occurs during assembly in vivo. We find that butyrate treatment of cells infected with simian virus 40 results in hyperacetylation of the histones of the extracted viral minichromosome as expected. However, the change in constrained supercoils of the minichromosome DNA is minimal, a result which is inconsistent with the proposed model. These results indicate that the proposed mechanism of transcriptional activation is unlikely to take place in the cell.


Sign in / Sign up

Export Citation Format

Share Document