scholarly journals A Repertoire of MicroRNAs Regulates Cancer Cell Starvation by Targeting Phospholipase D in a Feedback Loop That Operates Maximally in Cancer Cells

2016 ◽  
Vol 36 (7) ◽  
pp. 1078-1089 ◽  
Author(s):  
Kristen Fite ◽  
Lobna Elkhadragy ◽  
Julian Gomez-Cambronero

We report a negative feedback loop between the signaling protein phospholipase D (PLD), phosphatidic acid (PA), and a specific set of microRNAs (miRNAs) during nutrient starvation of breast cancer cells. We show that PLD expression is increased in four breast cancer cell lines and that hypoxia, cell overcrowding, and nutrient starvation for 3 to 6 h increase expression even further. However, after prolonged (>12-h) starvation, PLD levels return to basal or lower levels. The mechanism for this is as follows. First, during initial starvation, an elevated PA (the product of PLD enzymatic activity) activates mTOR and S6K, known to inhibit apoptosis, and enhances cell migration especially in post-epithelial-to-mesenchymal transition (post-EMT) cancer cells. Second, continued PA production in later starvation induces expression of PLD-targeting microRNA 203 (miR-203), miR-887, miR-3619-5p, and miR-182, which reduce PLD translation. We provide direct evidence for a feedback loop, whereby PLD induction upon starvation leads to PA, which induces expression of miRNAs, which in turn inhibits PLD2 translation. The physiological relevance for breast cancer cells is that as PA can activate cell invasion, then, due to the negative feedback, it can deprive mTOR and S6K of their natural activator. It can further prevent inhibition of apoptosis and allow cells to survive nutrient deprivation, which normal cells cannot do.

2020 ◽  
pp. jbc.RA120.016345
Author(s):  
Qiong Wu ◽  
Cheng Zhang ◽  
Keren Zhang ◽  
Qiushi Chen ◽  
Sijin Wu ◽  
...  

GalNAc-type O-glycosylation, initially catalyzed by polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts), is one of the most abundant and complex post-translational modifications of proteins. Emerging evidence has proven that aberrant ppGalNAc-Ts are involved in malignant tumor transformation. However, the exact molecular functions of ppGalNAc-Ts are still unclear. Here, the role of one isoform, ppGalNAc-T4, in breast cancer cell lines was investigated. The expression of ppGalNAc-T4 was found to be negatively associated with migration of breast cancer cells. Loss-of function studies revealed that ppGalNAc-T4 attenuated the migration and invasion of breast cancer cells by inhibiting the epithelial-mesenchymal transition (EMT) process. Correspondingly, transforming growth factor beta (TGF-β) signaling, which is the upstream pathway of EMT, was impaired by ppGalNAc-T4 expression. ppGalNAc-T4 knock-out decreased O-GalNAc modification of TGF-β type Ⅰ and Ⅱ receptor (TβR Ⅰ and Ⅱ) and led to the elevation of TGF-β receptor dimerization and activity. Importantly, a peptide from TβR Ⅱ was first identified as the naked peptide substrate of ppGalNAc-T4 with a higher affinity than ppGalNAc-T2. Further, Ser31, corresponding to the extracellular domain of TβR Ⅱ, was identified as the O-GalNAcylation site upon in vitro glycosylation by ppGalNAc-T4. The O-GalNAc-deficient S31A mutation enhanced TGF-β signaling activity and EMT in breast cancer cells. Together, these results identified a novel mechanism of ppGalNAc-T4-catalyzed TGF-β receptors O-GalNAcylation that suppresses breast cancer cell migration and invasion via the EMT process. Targeting ppGalNAc-T4 may be a potential therapeutic strategy for breast cancer treatment.


2019 ◽  
Vol 97 (5) ◽  
pp. 655-664 ◽  
Author(s):  
Sijia Han ◽  
Xiaoming Jin ◽  
Zhen Liu ◽  
Fei Xing ◽  
Ye Han ◽  
...  

Long noncoding RNA HOTTIP (HOXA transcript at the distal tip) has recently been reported to have a role in the proliferation of various cancer cells, yet its role in cell migration, invasiveness, and the EMT (epithelial–mesenchymal transition) in breast cancer and the potential mechanisms remain unknown. Breast cancer cell lines MDA-MB-231 and MDA-MB-468 were transfected with shRNA (short hairpin RNA) that specifically targeting HOTTIP. We observed a remarkable decrease in migration and invasiveness in these two breast cancer cell lines after knock-down of HOTTIP by shHOTTIP. We also demonstrated that the EMT of these two breast cell lines was suppressed after HOTTIP knock-down, as evidenced by increased E-cadherin levels, and decreased levels of N-cadherin, Snail, and Twist. Moreover, HOTTIP silencing also suppressed tumor metastasis in nude mice in vivo. In addition, we found that the expression of β-catenin was significantly decreased in breast cancer cells after knock-down of HOTTIP. In a further rescue experiment using overexpression of β-catenin, the rates of cell migration, invasiveness, and EMT of HOTTIP-silenced breast cancer cells were promoted, disclosing a potential role of the Wnt–β-catenin signaling pathway in this process. Overall, we discovered the positive regulatory function of HOTTIP in the migration, invasiveness, and EMT of breast cancer cells, via regulating the Wnt–β-catenin pathway.


2021 ◽  
Vol 22 (8) ◽  
pp. 4153
Author(s):  
Kutlwano R. Xulu ◽  
Tanya N. Augustine

Thromboembolic complications are a leading cause of morbidity and mortality in cancer patients. Cancer patients often present with an increased risk for thrombosis including hypercoagulation, so the application of antiplatelet strategies to oncology warrants further investigation. This study investigated the effects of anastrozole and antiplatelet therapy (aspirin/clopidogrel cocktail or atopaxar) treatment on the tumour responses of luminal phenotype breast cancer cells and induced hypercoagulation. Ethical clearance was obtained (M150263). Blood was co-cultured with breast cancer cell lines (MCF7 and T47D) pre-treated with anastrozole and/or antiplatelet drugs for 24 h. Hypercoagulation was indicated by thrombin production and platelet activation (morphological and molecular). Gene expression associated with the epithelial-to-mesenchymal transition (EMT) was assessed in breast cancer cells, and secreted cytokines associated with tumour progression were evaluated. Data were analysed with the PAST3 software. Our findings showed that antiplatelet therapies (aspirin/clopidogrel cocktail and atopaxar) combined with anastrozole failed to prevent hypercoagulation and induced evidence of a partial EMT. Differences in tumour responses that modulate tumour aggression were noted between breast cancer cell lines, and this may be an important consideration in the clinical management of subphenotypes of luminal phenotype breast cancer. Further investigation is needed before this treatment modality (combined hormone and antiplatelet therapy) can be considered for managing tumour associated-thromboembolic disorder.


2021 ◽  
Vol 22 (15) ◽  
pp. 7948
Author(s):  
Elham Jamshidifar ◽  
Faten Eshrati Yeganeh ◽  
Mona Shayan ◽  
Mohammad Tavakkoli Yaraki ◽  
Mahsa Bourbour ◽  
...  

In the present study, a magnetic niosomal nanocarrier for co-delivery of curcumin and letrozole into breast cancer cells has been designed. The magnetic NiCoFe2O4 core was coated by a thin layer of silica, followed by a niosomal structure, allowing us to load letrozole and curcumin into the silica layer and niosomal layer, respectively, and investigate their synergic effects on breast cancer cells. Furthermore, the nanocarriers demonstrated a pH-dependent release due to the niosomal structure at their outer layer, which is a promising behavior for cancer treatment. Additionally, cellular assays revealed that the nanocarriers had low cellular uptake in the case of non-tumorigenic cells (i.e., MCF-10A) and related high viability but high cellular uptake in cancer cell lines (i.e., MDA-MB-231 and SK-BR-3) and related low viability, which is evidenced in their high cytotoxicity against different breast cancer cell lines. The cytotoxicity of the letrozole/curcumin co-loaded nanocarrier is higher than that of the aqueous solutions of both drugs, indicating their enhanced cellular uptake in their encapsulated states. In particular, NiCoFe2O4@L-Silica-L@C-Niosome showed the highest cytotoxicity effects on MDA-MB-231 and SK-BR-3 breast cancer cells. The observed cytotoxicity was due to regulation of the expression levels of the studied genes in breast cancer cells, where downregulation was observed for the Bcl-2, MMP 2, MMP 9, cyclin D, and cyclin E genes while upregulation of the expression of the Bax, caspase-3, and caspase-9 genes was observed. The flow cytometry results also revealed that NiCoFe2O4@L-Silica-L@C-Niosome enhanced the apoptosis rate in both MDA-MB-231 and SK-BR-3 cells compared to the control samples. The findings of our research show the potential of designing magnetic niosomal formulations for simultaneous targeted delivery of both hydrophobic and hydrophilic drugs into cancer cells in order to enhance their synergic chemotherapeutic effects. These results could open new avenues into the future of nanomedicine and the development of theranostic agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tiantian Tang ◽  
Guiying Wang ◽  
Sihua Liu ◽  
Zhaoxue Zhang ◽  
Chen Liu ◽  
...  

AbstractThe role of organic anion transporting polypeptide 1B3 (SLCO1B3) in breast cancer is still controversial. The clinical immunohistochemical results showed that a greater proportion of patients with negative lymph nodes, AJCC stage I, and histological grade 1 (P < 0.05) was positively correlated with stronger expression of SLCO1B3, and DFS and OS were also increased significantly in these patients (P = 0.041, P = 0.001). Further subgroup analysis showed that DFS and OS were significantly enhanced with the increased expression of SLCO1B3 in the ER positive subgroup. The cellular function assay showed that the ability of cell proliferation, migration and invasion was significantly enhanced after knockdown of SLCO1B3 expression in breast cancer cell lines. In contrast, the ability of cell proliferation, migration and invasion was significantly reduced after overexpress the SLCO1B3 in breast cancer cell lines (P < 0.05). Overexpression or knockdown of SLCO1B3 had no effect on the apoptotic ability of breast cancer cells. High level of SLCO1B3 expression can inhibit the proliferation, invasion and migration of breast cancer cells, leading to better prognosis of patients. The role of SLCO1B3 in breast cancer may be related to estrogen. SLCO1B3 will become a potential biomarker for breast cancer diagnosis and prognosis assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lisa Svartdal Normann ◽  
Miriam Ragle Aure ◽  
Suvi-Katri Leivonen ◽  
Mads Haugland Haugen ◽  
Vesa Hongisto ◽  
...  

AbstractHER2-positive (HER2 +) breast cancer patients that do not respond to targeted treatment have a poor prognosis. The effects of targeted treatment on endogenous microRNA (miRNA) expression levels are unclear. We report that responsive HER2 + breast cancer cell lines had a higher number of miRNAs with altered expression after treatment with trastuzumab and lapatinib compared to poorly responsive cell lines. To evaluate whether miRNAs can sensitize HER2 + cells to treatment, we performed a high-throughput screen of 1626 miRNA mimics and inhibitors in combination with trastuzumab and lapatinib in HER2 + breast cancer cells. We identified eight miRNA mimics sensitizing cells to targeted treatment, miR-101-5p, mir-518a-5p, miR-19b-2-5p, miR-1237-3p, miR-29a-3p, miR-29c-3p, miR-106a-5p, and miR-744-3p. A higher expression of miR-101-5p predicted better prognosis in patients with HER2 + breast cancer (OS: p = 0.039; BCSS: p = 0.012), supporting the tumor-suppressing role of this miRNA. In conclusion, we have identified miRNAs that sensitize HER2 + breast cancer cells to targeted therapy. This indicates the potential of combining targeted drugs with miRNAs to improve current treatments for HER2 + breast cancers.


2021 ◽  
pp. 1-11
Author(s):  
Meng Li ◽  
Wenmin Zhang ◽  
Xiaodan Yang ◽  
Guo An ◽  
Wei Zhao

BACKGROUND: The voltage-gated calcium channel subunit alpha 2 delta 1 (α2δ1) is a functional tumor initial cells (TICs) marker for some solid cancer cells. This study aimed to investigate whether α2δ1 can be used as a potential TIC marker for breast cancer cells. METHODS: α2δ1+ and α2δ1- cells were identified and sorted from the breast cancer cell lines MDA-MB-231, MDA-MB-435s and ZR-75-1 by Immunofluorescence (IF) and Fluorescent-activated cell sorting (FACS) analyses. Spheroid formation in vitro and tumorigenesis in NOD/SCID mice were assessed to determine the self-renewal and serial transplantation abilities of these cells. Using a lentivirus infection system for α2δ1 in breast cancer cell lines, we determined the mRNA levels of stemnessassociated genes by quality real-time PCR (qRT-PCR). Boyden chamber and wounding assays were further performed to detect the migration of α2δ1 overexpression cells. Bioinformatics explored the relationship of molecular classification of breast cancer and drug resistance. RESULTS: α2δ1 presents on the cytomembrane of breast cancer cells, with a positive rate of 1.5–3%. The α2δ1+ cells in breast cancer cell lines have a stronger self-renewal ability and tumor initiating properties in vitro and in vivo. Overexpressing α2δ1 successfully enhanced the sphere-forming efficiency, and upregulated the expression of stemness-associated genes, and increased cell migration. However, seldom significant was available between estrogen receptor +/- (ER+/-), progesterone receptor (PR+/-), and Her2+/-. CONCLUSIONS: Breast cancer cells positive for the α2δ1 charactered tumor initiation, and α2δ1 is a potential TIC marker for breast cancer that further promotes the migration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiraporn Kantapan ◽  
Siwaphon Paksee ◽  
Aphidet Duangya ◽  
Padchanee Sangthong ◽  
Sittiruk Roytrakul ◽  
...  

Abstract Background Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial–mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. Methods Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24−/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-β-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. Results Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. Conclusion MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


2021 ◽  
Author(s):  
zhuo Chen ◽  
jing Wu ◽  
liang Wang ◽  
hua Zhao ◽  
jie He

Abstract Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. More and more studies have shown that the tumor immune microenvironment (TME) of TNBC is closely related to its poor prognosis and early metastasis. We try to explain how tumor-associate macrophages (TAMs), an important component of the TME, function in the matrix of TNBC. Therefore, we induced THP-1 cells to become M1-TAMs and M2-TAMs, investigated their influence on breast cancer cells. 82 TNBC paraffin samples were made into tissue microarrays. The expression of macrophages makers were measured by immunohistochemistry. Scratch assay, Transwell assay, CCK-8 cell proliferation assay were performed in the co-culture system of breast cancer cells lines and macrophages to observe the invasion and proliferation ability of breast cancer cell lines. Western Blot (WB) was performed to detect the expression of E-cadherin (CDH1) and N-cadherin (CDH2). M2-TAMs were more numerous than M1-TAMs in the matrix of TNBC cancer nests and associated with poor prognosis. M2-TAMs promoted the invasion, migration and proliferation of TNBC cells. M1-TAMs had inhibitory effects. In MCF-7 cells, WB showed a decrease in CDH1 and an increase in CDH2. In MDA-MB-231 cells and BT549 cells, CDH2 expression was reduced and CDH1 expression was increased. All of the above results were statistically significant, p < 0.001. M2-TAMs were more numerous in TNBC and associated with poor prognosis. M2-TAMs promoted the invasion, migration and proliferation of breast cancer cells. The mechanism may be related to the epithelial-mesenchymal transition (EMT).


Sign in / Sign up

Export Citation Format

Share Document