scholarly journals The hsp90-FKBP52 Complex Links the Mineralocorticoid Receptor to Motor Proteins and Persists Bound to the Receptor in Early Nuclear Events

2009 ◽  
Vol 30 (5) ◽  
pp. 1285-1298 ◽  
Author(s):  
Mario D. Galigniana ◽  
Alejandra G. Erlejman ◽  
Martín Monte ◽  
Celso Gomez-Sanchez ◽  
Graciela Piwien-Pilipuk

ABSTRACT In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR. The complete movement machinery, including dynein and tubulin, could be recovered from paclitaxel/GTP-stabilized cytosol and was fully reassembled on stripped MR immune pellets. The whole MR-hsp90-based heterocomplex was transiently recovered in the soluble fraction of the nucleus after 10 min of incubation with aldosterone. Moreover, cross-linked MR-hsp90 heterocomplexes accumulated in the nucleus in a hormone-dependent manner, demonstrating that the heterocomplex can pass undissociated through the nuclear pore. On the other hand, a peptide that comprises the DNA-binding domain of MR impaired the nuclear export of MR, suggesting the involvement of this domain in the process. This study represents the first report describing the entire molecular system that commands MR nucleocytoplasmic trafficking and proposes that the MR-hsp90-TPR protein heterocomplex is dissociated in the nucleus rather than in the cytoplasm.

2000 ◽  
Vol 20 (2) ◽  
pp. 542-555 ◽  
Author(s):  
Mary E. Miller ◽  
Frederick R. Cross

ABSTRACT The G1 cyclins of budding yeast drive cell cycle initiation by different mechanisms, but the molecular basis of their specificity is unknown. Here we test the hypothesis that the functional specificity of G1 cyclins is due to differential subcellular localization. As shown by indirect immunofluorescence and biochemical fractionation, Cln3p localization appears to be primarily nuclear, with the most obvious accumulation of Cln3p to the nuclei of large budded cells. In contrast, Cln2p localizes to the cytoplasm. We were able to shift localization patterns of truncated Cln3p by the addition of nuclear localization and nuclear export signals, and we found that nuclear localization drives a Cln3p-like functional profile, while cytoplasmic localization leads to a partial shift to a Cln2p-like functional profile. Therefore, forcing Cln3p into a Cln2p-like cytoplasmic localization pattern partially alters the functional specificity of Cln3p toward that of Cln2p. These results suggest that there are CLN-dependent cytoplasmic and nuclear events important for cell cycle initiation. This is the first indication of a cytoplasmic function for a cyclin-dependent kinase. The data presented here support the idea that cyclin function is regulated at the level of subcellular localization and that subcellular localization contributes to the functional specificity of Cln2p and Cln3p.


2005 ◽  
Vol 16 (6) ◽  
pp. 2999-3009 ◽  
Author(s):  
Sten Strunze ◽  
Lloyd C. Trotman ◽  
Karin Boucke ◽  
Urs F. Greber

Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Mirna N Chahine ◽  
Maxime Mioulane ◽  
Gabor Földes ◽  
Alexander Lyon ◽  
Sian E Harding

During cardiac hypertrophy, cardiomyocytes (CM) present alterations in gene expression and increased contractile protein content. Nuclear protein import (NPI) is critical in regulating gene expression, transcription, and subsequently cell hypertrophy. However, it is unknown how the nuclear transport machinery (transport receptors and nuclear pore complex (NPC)) functions to sustain increased demands for nucleocytoplasmic trafficking. The aim of this study was to determine if exposure of adult CM to phenylephrine (PE) affects hypertrophy by altering NPI and NPC density. Comparisons were made to adult failing rat and human CM. Rat myocytes were enzymatically isolated from adult hearts, and used for immunocytochemistry, qPCR and western immunoblotting. Failing CM were obtained from explanted human hearts at the time of transplant and from a rat model of myocardial infarction-induced hypertrophy and failure. Rat adult CM exposed for 48h to PE were injected with a protein import substrate (Alexa488-BSA-NLS) to visually monitor nuclear import with the confocal microscope. The effects of P38 MAPK inhibitor, HDAC inhibitor, Exportin-1 (CRM-1) inhibitor, and GSK-3 β inhibitor were investigated. Cell and nuclear sizes were increased in PE treated-adult rat CM and in the adult failing rat and human CM compared to normal CM. In contrast, PE depressed the rate and maximal NPI (by 65 +/- 3.4 % (3.55 from 5.46), p<0.05) as well as nucleoporin p62 mRNA and protein expression levels in adult rat CM compared to non-treated CM. Nucleoporin p62, cytoplasmic Ranbp1, and nuclear translocation of importins (Imp.α and β) relative densities were also decreased in PE treated-adult rat CM and in adult failing rat CM and human heart tissue compared to normal controls. On the contrary, CRM-1 nuclear export relative density was increased during the same pathological conditions. Thus NPI downregulation is linked to an increased nuclear export required by CM to generate the hypertrophic phenotype. All these effects were P38MAPK, HDAC and CRM-1 dependent but GSK-3Beta independent in rat CM. Our results show that alterations in NPI and NPC density occur in failing CM as well as in CM under hypertrophic stimuli. NPI may represent a critical therapeutic target in hypertrophic conditions.


2002 ◽  
Vol 22 (16) ◽  
pp. 5708-5720 ◽  
Author(s):  
Scott Kuersten ◽  
Gert-Jan Arts ◽  
Tobias C. Walther ◽  
Ludwig Englmeier ◽  
Iain W. Mattaj

ABSTRACT Vertebrate tRNA export receptor exportin-t (Xpo-t) binds to RanGTP and mature tRNAs cooperatively to form a nuclear export complex. Xpo-t shuttles bidirectionally through nuclear pore complexes (NPCs) but is mainly nuclear at steady state. The steady-state distribution of Xpo-t is shown to depend on its interaction with RanGTP. Two distinct Xpo-t NPC interaction domains that bind differentially to peripherally localized nucleoporins in vitro are identified. The N terminus binds to both Nup153 and RanBP2/Nup358 in a RanGTP-dependent manner, while the C terminus binds to CAN/Nup214 independently of Ran. We propose that these interactions increase the concentration of tRNA export complexes and of empty Xpo-t in the vicinity of NPCs and thus increase the efficiency of the Xpo-t transport cycle.


APOPTOSIS ◽  
2016 ◽  
Vol 22 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Kelly J. Higby ◽  
Melissa M. Bischak ◽  
Christina A. Campbell ◽  
Rebecca G. Anderson ◽  
Sarah A. Broskin ◽  
...  

2019 ◽  
Author(s):  
Vasilisa Aksenova ◽  
Hang Noh Lee ◽  
Alexandra Smith ◽  
Shane Chen ◽  
Prasanna Bhat ◽  
...  

AbstractNuclear pore complexes (NPCs) are important for many processes beyond nucleocytoplasmic trafficking, including protein modification, chromatin remodeling, transcription, mRNA processing and mRNA export. The multi-faceted nature of NPCs and the slow turnover of their components has made it difficult to understand the role of basket nucleoporins (Nup153, Nup50 and Tpr) in these diverse processes. To address this question, we used anAuxin-InducedDegron (AID) system to distinguish roles of basket nucleoporins: Loss of individual nucleoporins caused distinct alteration in patterns of nucleocytoplasmic trafficking and gene expression. Importantly, Tpr elimination caused rapid and pronounced changes in transcriptomic profiles within two hours of auxin addition. These changes were dissimilar to shifts observed after loss of Nup153 or Nup50, but closely related to changes after depletion of mRNA export receptor NXF1 or the GANP subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex. Moreover, GANP association to NPCs was specifically disrupted upon TPR depletion. Together, our findings demonstrate a unique and pivotal role of Tpr in regulating gene expression through GANP- and/or NXF1-dependent mRNA nuclear export.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1959-1959
Author(s):  
Akiko Takeda ◽  
Anmaar M Abdul-Nabi ◽  
Nabeel R. Yaseen

Abstract Abstract 1959 Poster Board I-982 NUP98 is a nucleoporin that plays complex roles in the nucleocytoplasmic trafficking of macromolecules. Rearrangements of the NUP98 gene in human leukemia result in the expression of numerous fusion oncoproteins whose effect on nucleocytoplasmic trafficking is poorly understood. The present study was undertaken to determine the effects of leukemogenic NUP98 fusion proteins on CRM1-mediated nuclear export. NUP98-HOXA9, a prototypic NUP98 fusion, inhibited the nuclear export of two known CRM1 substrates: mutated cytoplasmic nucleophosmin (NPMc) and HIV-1 Rev. In-vitro binding assays revealed that NUP98-HOXA9 binds CRM1 through the FG-repeat motif in a Ran-GTP dependent manner similar to but stronger than the interaction between CRM1 and its export substrates. Two NUP98 fusions, NUP98-HOXA9 and NUP98-DDX10, whose fusion partners are structurally and functionally unrelated, interacted with endogenous CRM1 in cells as shown by co-immunoprecipitation. These leukemogenic NUP98 fusion proteins interacted with CRM1, Ran, and the nucleoporin NUP214 in a manner fundamentally different from that of wild-type NUP98. NUP98-HOXA9 and NUP98-DDX10 formed characteristic aggregates within the nuclei of myeloid cells and caused aberrant localization of CRM1 to these aggregates. These NUP98 fusions caused nuclear accumulation of two transcription factors, NFAT and NFΚB, that are regulated by CRM1-mediated export. The nuclear entrapment of NFAT and NFΚB correlated with enhanced transcription from promoters responsive to these transcription factors. Taken together, the results suggest a new mechanism by which NUP98 fusions dysregulate transcription and cause leukemia, namely, inhibition of CRM1-mediated nuclear export with aberrant nuclear retention of transcriptional regulators. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 113 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Carsten Strübing ◽  
David E. Clapham

The nuclear pore complex (NPC) mediates communication between the cytoplasm and nucleus in eukaryotic cells. Active transport of large polypeptides as well as passive diffusion of smaller (≈10 kD) macromolecules through the NPC can be inhibited by depletion of intracellular Ca2+ stores. However, the physiological relevance of this process for the regulation of nucleocytoplasmic trafficking is not yet clear. We expressed green fluorescent protein (GFP)–tagged glucocorticoid receptor (GR) and mitogen-activated protein (MAP) kinase–activated protein kinase 2 (MK2) to study the effect of Ca2+ store depletion on active transport in HM1 cells, a human embryonic kidney cell line stably transfected with the muscarinic M1 receptor. Dexamethasone-induced nuclear import of GR-GFP and anisomycin-induced nuclear export of GFP-MK2 was monitored by confocal microscopy. We found that store depletion by carbachol, thapsigargin or ionomycin had no effect on GR-GFP import, whereas pretreatment with 1,2-bis-(o-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid–acetoxymethyl ester (BAPTA-AM) attenuated import significantly. Export of GFP-MK2 was not influenced by any pretreatment. Moreover, carbachol stimulated GFP-MK2 translocation to the cytoplasm in the absence of anisomycin. These results demonstrate that Ca2+ store depletion in intact HM1 cells is not directly linked to the inhibition of active protein transport through the NPC. The inhibition of GR-GFP import but not GFP-MK2 export by BAPTA-AM presumably involves a depletion-independent mechanism that interferes with components of the nuclear import pathway.


2016 ◽  
Vol 36 (13) ◽  
pp. 1820-1835 ◽  
Author(s):  
Shoko Saito ◽  
Sadik Cigdem ◽  
Mitsuru Okuwaki ◽  
Kyosuke Nagata

Nuclear-cytoplasmic transport through nuclear pore complexes is mediated by nuclear transport receptors. Previous reports have suggested that aberrant nuclear-cytoplasmic transport due to mutations or overexpression of nuclear pore complexes and nuclear transport receptors is closely linked to diseases. Nup214, a component of nuclear pore complexes, has been found as chimeric fusion proteins in leukemia. Among various Nup214 fusion proteins, SET-Nup214 and DEK-Nup214 have been shown to be engaged in tumorigenesis, but their oncogenic mechanisms remain unclear. In this study, we examined the functions of the Nup214 fusion proteins by focusing on their effects on nuclear-cytoplasmic transport. We found that SET-Nup214 and DEK-Nup214 interact with exportin-1 (XPO1)/CRM1 and nuclear RNA export factor 1 (NXF1)/TAP, which mediate leucine-rich nuclear export signal (NES)-dependent protein export and mRNA export, respectively. SET-Nup214 and DEK-Nup214 decreased the XPO1-mediated nuclear export of NES proteins such as cyclin B and proteins involved in the NF-κB signaling pathway by tethering XPO1 onto nuclear dots where Nup214 fusion proteins are localized. We also demonstrated that SET-Nup214 and DEK-Nup214 expression inhibited NF-κB-mediated transcription by abnormal tethering of the complex containing p65 and its inhibitor, IκB, in the nucleus. These results suggest that SET-Nup214 and DEK-Nup214 perturb the regulation of gene expression through alteration of the nuclear-cytoplasmic transport system.


2004 ◽  
Vol 165 (6) ◽  
pp. 823-833 ◽  
Author(s):  
Andreas Marg ◽  
Ying Shan ◽  
Thomas Meyer ◽  
Torsten Meissner ◽  
Martin Brandenburg ◽  
...  

Interferon stimulation of cells leads to the tyrosine phosphorylation of latent Stat1 and subsequent transient accumulation in the nucleus that requires canonical transport factors. However, the mechanisms that control the predominantly cytoplasmic localization in unstimulated cells have not been resolved. We uncovered that constitutive energy- and transport factor-independent nucleocytoplasmic shuttling is a property of unphosphorylated Stat1, Stat3, and Stat5. The NH2- and COOH-terminal Stat domains are generally dispensable, whereas alkylation of a single cysteine residue blocked cytokine-independent nuclear translocation and thus implicated the linker domain into the cycling of Stat1. It is revealed that constitutive nucleocytoplasmic shuttling of Stat1 is mediated by direct interactions with the FG repeat regions of nucleoporin 153 and nucleoporin 214 of the nuclear pore. Concurrent active nuclear export by CRM1 created a nucleocytoplasmic Stat1 concentration gradient that is significantly reduced by the blocking of energy-requiring translocation mechanisms or the specific inactivation of CRM1. Thus, we propose that two independent translocation pathways cooperate to determine the steady-state distribution of Stat1.


Sign in / Sign up

Export Citation Format

Share Document