scholarly journals Mechanism of Histone H1-Stimulated Glucocorticoid Receptor DNA Binding In Vivo

2008 ◽  
Vol 28 (21) ◽  
pp. 6730-6730
Author(s):  
Sergey Belikov ◽  
Carolina Åstrand ◽  
Örjan Wrange
2007 ◽  
Vol 27 (6) ◽  
pp. 2398-2410 ◽  
Author(s):  
Sergey Belikov ◽  
Carolina Åstrand ◽  
Örjan Wrange

ABSTRACT Xenopus oocytes lack somatic linker histone H1 but contain an oocyte-specific variant, B4. The glucocorticoid receptor (GR) inducible mouse mammary tumor virus (MMTV) promoter was reconstituted in Xenopus oocytes to address the effects of histone H1. The expression of Xenopus H1A (H1) via cytoplasmic mRNA injection resulted in H1 incorporation into in vivo assembled chromatin based on (i) the appearance of a chromatosome stop, (ii) the increased nucleosome repeat length (NRL), and (iii) H1-DNA binding assayed by chromatin immunoprecipitation (ChIP). The H1 effect on the NRL was saturable and hence represents H1-binding to a specific site. A subsaturating level of H1 enhanced the hormone-dependent binding of GR to the glucocorticoid response elements (GREs) and the hormone-dependent MMTV transcription while it reduced the access to DNA as revealed by micrococcal nuclease (MNase) analysis. These H1 effects were lost at higher levels of H1. ChIP and MNase analysis revealed a hormone-dependent dissociation of H1 from the activated chromatin domain. The proposed mechanism of H1-induced GR binding is based on two effects: (i) a GR-induced asymmetric distribution of H1 in favor of inactive chromatin and (ii) an H1-induced reduction in DNA access. These effects results in increased concentration of free GR and, hence, in increased GR-GRE binding.


1992 ◽  
Vol 12 (11) ◽  
pp. 4960-4969
Author(s):  
E Kutoh ◽  
P E Strömstedt ◽  
L Poellinger

The ubiquitous and constitutive octamer transcription factor OTF-1 (Oct 1) is the target of positive regulation by the potent herpes simplex virus trans-activator VP16, which forms a complex with the homeodomain of OTF-1. Here we present evidence that the glucocorticoid receptor can negatively regulate OTF-1 function by a mechanism that is independent of DNA binding. In vivo-expressed glucocorticoid receptor inhibited in a hormone-dependent manner activation of a minimal promoter construct carrying a functional octamer site. Moreover, expression of the receptor in vivo resulted in hormone-dependent repression of OTF-1-dependent DNA-binding activity in nuclear extract. In vitro, the DNA-binding activity of partially purified OTF-1 was repressed following incubation with purified glucocorticoid receptor. Cross-linking and immunoprecipitation experiments indicated that the functional interference may be due to a strong association between these two proteins in solution. Finally, preliminary evidence indicates that the homeo subdomain of OTF-1 that directs formation of a complex with VP16 may also be critical for interaction with the glucocorticoid receptor. Thus, OTF-1 is a target for both positive and negative regulation by protein-protein interaction. Moreover, the functional interference between OTF-1 and the glucocorticoid receptor represents a novel regulatory mechanism in the cross-coupling of signal transduction pathways of nuclear receptors and constitutive transcription factors.


2001 ◽  
Vol 21 (3) ◽  
pp. 781-793 ◽  
Author(s):  
Joanne G. A. Savory ◽  
Gratien G. Préfontaine ◽  
Claudia Lamprecht ◽  
Mingmin Liao ◽  
Rhian F. Walther ◽  
...  

ABSTRACT Steroid hormone receptors act to regulate specific gene transcription primarily as steroid-specific dimers bound to palindromic DNA response elements. DNA-dependent dimerization contacts mediated between the receptor DNA binding domains stabilize DNA binding. Additionally, some steroid receptors dimerize prior to their arrival on DNA through interactions mediated through the receptor ligand binding domain. In this report, we describe the steroid-induced homomeric interaction of the rat glucocorticoid receptor (GR) in solution in vivo. Our results demonstrate that GR interacts in solution at least as a dimer, and we have delimited this interaction to a novel interface within the hinge region of GR that appears to be both necessary and sufficient for direct binding. Strikingly, we also demonstrate an interaction between GR and the mineralocorticoid receptor in solution in vivo that is dependent on the ligand binding domain of GR alone and is separable from homodimerization of the glucocorticoid receptor. These results indicate that functional interactions between the glucocorticoid and mineralocorticoid receptors in activating specific gene transcription are probably more complex than has been previously appreciated.


1999 ◽  
Vol 147 (7) ◽  
pp. 1365-1370 ◽  
Author(s):  
Jan P. Tuckermann ◽  
Holger M. Reichardt ◽  
Rosa Arribas ◽  
K. Hartmut Richter ◽  
Günther Schütz ◽  
...  

The glucocorticoid receptor (GR) mediates the biological effects of glucocorticoids (GCs) through activation or repression of gene expression, either by DNA binding or via interaction with other transcription factors, such as AP-1. Work in tissue culture cells on the regulation of AP-1–dependent genes, such as collagenase (MMP-13) and stromelysin (MMP-3) has suggested that the antitumor and antiinflammatory activity of GCs is mediated, at least in part, by GR-mediated downmodulation of AP-1. Here, we have identified phorbol ester-induced expression of MMP-3 and MMP-13 in mouse skin as the first example of an in vivo system to measure negative interference between AP-1 and GR in the animal. Cell type-specific induction of these genes by tumor promoters is abolished by GCs. Importantly, this is also the case in GRdim mice expressing a DNA binding-defective mutant version of GR. In contrast, the newly identified target genes in skin, plasma glutathione peroxidase and HSP-27, were induced by GC in wild-type, but not in GRdim mice. Thus, these data suggest that the DNA binding-independent function of the GR is dispensable for repression of AP-1 activity in vivo and responsible for the antitumor promoting activity of GCs.


1992 ◽  
Vol 12 (11) ◽  
pp. 4960-4969 ◽  
Author(s):  
E Kutoh ◽  
P E Strömstedt ◽  
L Poellinger

The ubiquitous and constitutive octamer transcription factor OTF-1 (Oct 1) is the target of positive regulation by the potent herpes simplex virus trans-activator VP16, which forms a complex with the homeodomain of OTF-1. Here we present evidence that the glucocorticoid receptor can negatively regulate OTF-1 function by a mechanism that is independent of DNA binding. In vivo-expressed glucocorticoid receptor inhibited in a hormone-dependent manner activation of a minimal promoter construct carrying a functional octamer site. Moreover, expression of the receptor in vivo resulted in hormone-dependent repression of OTF-1-dependent DNA-binding activity in nuclear extract. In vitro, the DNA-binding activity of partially purified OTF-1 was repressed following incubation with purified glucocorticoid receptor. Cross-linking and immunoprecipitation experiments indicated that the functional interference may be due to a strong association between these two proteins in solution. Finally, preliminary evidence indicates that the homeo subdomain of OTF-1 that directs formation of a complex with VP16 may also be critical for interaction with the glucocorticoid receptor. Thus, OTF-1 is a target for both positive and negative regulation by protein-protein interaction. Moreover, the functional interference between OTF-1 and the glucocorticoid receptor represents a novel regulatory mechanism in the cross-coupling of signal transduction pathways of nuclear receptors and constitutive transcription factors.


2016 ◽  
Vol 113 (29) ◽  
pp. 8236-8241 ◽  
Author(s):  
Diego M. Presman ◽  
Sourav Ganguly ◽  
R. Louis Schiltz ◽  
Thomas A. Johnson ◽  
Tatiana S. Karpova ◽  
...  

Transcription factors dynamically bind to chromatin and are essential for the regulation of genes. Although a large percentage of these proteins appear to self-associate to form dimers or higher order oligomers, the stoichiometry of DNA-bound transcription factors has been poorly characterized in vivo. The glucocorticoid receptor (GR) is a ligand-regulated transcription factor widely believed to act as a dimer or a monomer. Using a unique set of imaging techniques coupled with a cell line containing an array of DNA binding elements, we show that GR is predominantly a tetramer when bound to its target DNA. We find that DNA binding triggers an interdomain allosteric regulation within the GR, leading to tetramerization. We therefore propose that dynamic changes in GR stoichiometry represent a previously unidentified level of regulation in steroid receptor activation. Quaternary structure analysis of other members of the steroid receptor family (estrogen, androgen, and progesterone receptors) reveals variation in oligomerization states among this family of transcription factors. Because GR’s oligomerization state has been implicated in therapy outcome, our findings open new doors to the rational design of novel GR ligands and redefine the quaternary structure of steroid receptors.


1999 ◽  
Vol 341 (3) ◽  
pp. 515-521 ◽  
Author(s):  
Erik SCHOENMAKERS ◽  
Philippe ALEN ◽  
Guy VERRIJDT ◽  
Ben PEETERS ◽  
Guido VERHOEVEN ◽  
...  

The androgen and glucocorticoid hormones evoke specific in vivo responses by activating different sets of responsive genes. Although the consensus sequences of the glucocorticoid and androgen response elements are very similar, this in vivo specificity can in some cases be explained by differences in DNA recognition between both receptors. This has clearly been demonstrated for the androgen response element PB-ARE-2 described in the promoter of the rat probasin gene. Swapping of different fragments between the androgen- and glucocorticoid-receptor DNA-binding domains demonstrates that (i) the first Zn-finger module is not involved in this sequence selectivity and (ii) that residues in the second Zn-finger as well as a C-terminal extension of the DNA-binding domain from the androgen receptor are required. For specific and high-affinity binding to response elements, the DNA-binding domains of the androgen and glucocorticoid receptors need a different C-terminal extension. The glucocorticoid receptor requires 12 C-terminal amino acids for high affinity DNA binding, while the androgen receptor only involves four residues. However, for specific recognition of the PB-ARE-2, the androgen receptor also requires 12 C-terminal residues. Our data demonstrate that the mechanism by which the androgen receptor binds selectively to the PB-ARE-2 is different from that used by the glucocorticoid receptor to bind a consensus response element. We would like to suggest that the androgen receptor recognizes response elements as a direct repeat rather than the classical inverted repeat.


2005 ◽  
Vol 19 (4) ◽  
pp. 885-897 ◽  
Author(s):  
Christine Martens ◽  
Steve Bilodeau ◽  
Mario Maira ◽  
Yves Gauthier ◽  
Jacques Drouin

Abstract Glucocorticoids (Gc) act through the glucocorticoid receptor (GR) to enhance or repress transcription of glucocorticoid-responsive genes depending on the promoter and cellular context. Repression of proopiomelanocortin (POMC) gene expression by Gc was proposed to use different mechanisms. We described the POMC promoter Nur response element (NurRE) as a target for Gc repression. NGFI-B (Nur77), an orphan nuclear receptor, and two related factors, Nurr1 and NOR1, bind the NurRE as homo- or heterodimers to enhance POMC gene expression in response to CRH. Gc antagonize CRH-stimulated as well as NGFI-B-dependent transcription. We now show that GR antagonizes NurRE-dependent transcription induced by all members of the Nur77 subfamily and that these nuclear receptors can all interact directly with GR. Transcriptional antagonism as well as direct protein-protein interaction between NGFI-B and GR take place primarily via their respective DNA binding domains, although DNA binding itself and the GR homodimerization interface are not involved. In vivo, GR and Nur factors can be coimmunoprecipitated whereas GR is recruited to the POMC promoter upon glucocorticoid action. Thus, our data suggest a mechanism for transrepression between two nuclear receptors, GR and NGFI-B, that is unique, although quite similar to that proposed for transrepression between GR and activator protein 1 (AP-1) or nuclear factor-κB (NFκB).


Sign in / Sign up

Export Citation Format

Share Document