scholarly journals Poly(Q) Expansions in ATXN7 Affect Solubility but Not Activity of the SAGA Deubiquitinating Module

2015 ◽  
Vol 35 (10) ◽  
pp. 1777-1787 ◽  
Author(s):  
Xianjiang Lan ◽  
Evangelia Koutelou ◽  
Andria C. Schibler ◽  
Yi Chun Chen ◽  
Patrick A. Grant ◽  
...  

Spinocerebellar ataxia type 7 (SCA7) is a debilitating neurodegenerative disease caused by expansion of a polyglutamine [poly(Q)] tract in ATXN7, a subunit of the deubiquitinase (DUB) module (DUBm) in the SAGA complex. The effects of ATXN7-poly(Q) on DUB activity are not known. To address this important question, we reconstituted the DUBmin vitrowith either wild-type ATXN7 or a pathogenic form, ATXN7-92Q NT, with 92 Q residues at the N terminus (NT). We found that both forms of ATXN7 greatly enhance DUB activity but that ATXN7-92Q NT is largely insoluble unless it is incorporated into the DUBm. Cooverexpression of DUBm components in human astrocytes also promoted the solubility of ATXN7-92Q, inhibiting its aggregation into nuclear inclusions that sequester DUBm components, leading to global increases in ubiquitinated H2B (H2Bub) levels. Global H2Bub levels were also increased in the cerebellums of mice in a SCA7 mouse model. Our findings indicate that although ATXN7 poly(Q) expansions do not change the enzymatic activity of the DUBm, they likely contribute to SCA7 by initiating aggregates that sequester the DUBm away from its substrates.

2021 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Wen-Hsin Lee ◽  
Sandhya Bangaru ◽  
Andrew B Ward ◽  
...  

After first emerging in December 2019 in China, severe acute respiratory syndrome 2 (SARS-CoV-2) has since caused a pandemic leading to millions of infections and deaths worldwide. Vaccines have been developed and authorized but supply of these vaccines is currently limited. With new variants of the virus now emerging and spreading globally, it is essential to develop therapeutics that are broadly protective and bind conserved epitopes in the receptor binding domain (RBD) or the whole spike of SARS-CoV-2. In this study, we have generated mouse monoclonal antibodies (mAbs) against different epitopes on the RBD and assessed binding and neutralization against authentic SARS-CoV-2. We have demonstrated that antibodies with neutralizing activity, but not non-neutralizing antibodies, lower viral titers in the lungs when administered in a prophylactic setting in vivo in a mouse challenge model. In addition, most of the mAbs cross-neutralize the B.1.351 as well as the B.1.1.7 variants in vitro.


2007 ◽  
Vol 75 (6) ◽  
pp. 2946-2953 ◽  
Author(s):  
Zoë E. V. Worthington ◽  
Nicholas H. Carbonetti

ABSTRACT Pertussis toxin (PT) is an important virulence factor produced by Bordetella pertussis. PT holotoxin comprises one enzymatically active A subunit (S1), associated with a pentamer of B subunits. PT is an ADP-ribosyltransferase that modifies several mammalian heterotrimeric G proteins. Some bacterial toxins are believed to undergo retrograde intracellular transport through the Golgi apparatus to the endoplasmic reticulum (ER). The ER-associated degradation (ERAD) pathway involves the removal of misfolded proteins from the ER and degradation upon their return to the cytosol; this pathway may be exploited by PT and other toxins. In the cytosol, ERAD substrates are ubiquitinated at lysine residues, targeting them to the proteasome for degradation. We hypothesize that S1 avoids ubiquitination and proteasome degradation due to its lack of lysine residues. We predicted that the addition of lysine residues would reduce PT toxicity by allowing ubiquitination and degradation to occur. Variant forms of PT were engineered, replacing one, two, or three arginines with lysines in a variety of locations on S1. Several variants were identified with wild-type in vitro enzymatic activity but reduced cellular activity, consistent with our hypothesis. Significant recovery of the cellular activity of these variants was observed when CHO cells were pretreated with a proteasome inhibitor. We concluded that the replacement of arginine residues with lysine in the S1 subunit of PT renders the toxin subject to proteasomal degradation, suggesting that wild-type PT avoids proteasome degradation due to an absence of lysine residues.


2007 ◽  
Vol 27 (22) ◽  
pp. 7828-7838 ◽  
Author(s):  
Guoqi Liu ◽  
John J. Bissler ◽  
Richard R. Sinden ◽  
Michael Leffak

ABSTRACT Spinocerebellar ataxia type 10 (SCA10) is associated with expansion of (ATTCT) n repeats (where n is the number of repeats) within the ataxin 10 (ATX10/E46L) gene. The demonstration that (ATTCT) n tracts can act as DNA unwinding elements (DUEs) in vitro has suggested that aberrant replication origin activity occurs at expanded (ATTCT) n tracts and may lead to their instability. Here, we confirm these predictions. The wild-type ATX10 locus displays inefficient origin activity, but origin activity is elevated at the expanded ATX10 loci in patient-derived cells. To test whether (ATTCT) n tracts can potentiate origin activity, cell lines were constructed that contain ectopic copies of the c-myc replicator in which the essential DUE was replaced by ATX10 DUEs with (ATTCT) n . ATX10 DUEs containing (ATTCT)27 or (ATTCT)48, but not (ATTCT)8 or (ATTCT)13, could substitute functionally for the c-myc DUE, but (ATTCT)48 could not act as an autonomous replicator. Significantly, chimeric c-myc replicators containing ATX10 DUEs displayed length-dependent (ATTCT) n instability. By 250 population doublings, dramatic two- and fourfold length expansions were observed for (ATTCT)27 and (ATTCT)48 but not for (ATTCT)8 or (ATTCT)13. These results implicate replication origin activity as one molecular mechanism associated with the instability of (ATTCT) n tracts that are longer than normal length.


2013 ◽  
Vol 8 (1) ◽  
pp. 42 ◽  
Author(s):  
Carlotta E Duncan ◽  
Mahru C An ◽  
Theodora Papanikolaou ◽  
Caitlin Rugani ◽  
Cathy Vitelli ◽  
...  

2004 ◽  
Vol 48 (1) ◽  
pp. 80-85 ◽  
Author(s):  
E. Azoulay-Dupuis ◽  
J. Mohler ◽  
J. P. Bédos

ABSTRACT The efficacy of BB-83698, a novel potent peptide deformylase inhibitor, was evaluated in a mouse model of acute pneumonia. The Streptococcus pneumoniae isolates tested included four virulent strains (one penicillin-susceptible wild-type strain, one macrolide-resistant strain, and two quinolone-resistant mutants [a mutant carrying mutations in ParC and GyrA and an efflux mutant] isogenic to the wild type) and two poorly virulent penicillin-resistant strains. Pneumonia was induced by intratracheal inoculation of 105 CFU (virulent strains) into immunocompetent mice or 107 CFU (less virulent strains) into leukopenic mice. Animals received three or six subcutaneous injections of antibiotics at 12- or 24-h intervals, with antibiotic treatment initiated at 3, 6, 12, or 18 h postinfection (p.i.). BB-83698 showed potent in vitro activity against all strains (MICs, 0.06 to 0.25 μg/ml). In the in vivo model, all control animals died within 2 to 5 days of infection. BB-83698 (80 mg/kg of body weight twice daily or 160 mg/kg once daily) protected 70 to 100% of the animals, as measured 10 days p.i., regardless of the preexisting resistance mechanisms. In contrast, the survival rates for animals treated with the comparator antibiotics were 30% for animals treated with erythromycin (100 mg/kg) and infected with the macrolide-resistant strain, 34% for animals treated with amoxicillin (200 mg/kg every 8 h) and infected with the penicillin-resistant strain, and 0 and 78% for animals treated with ciprofloxacin (250 mg/kg) and infected with the ParC and GyrA mutant and the efflux mutant, respectively. At 80 mg/kg, BB-83698 generated a peak concentration in lung tissue of 61.9 μg/ml within 1 h and areas under the concentration-times curves of 57.4 and 229.4 μg · h/ml for plasma and lung tissue, respectively. The emergence of S. pneumoniae isolates with reduced susceptibilities to BB-83698 was not observed following treatment with a suboptimal dosing regimen. In conclusion, the potent in vitro activity of BB-83698 against S. pneumoniae, including resistant strains, translates into good in vivo efficacy in a mouse pneumonia model.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 641-641 ◽  
Author(s):  
Suzanne Trudel ◽  
Zhi Hua Li ◽  
Ellen Wei ◽  
Marion Wiesmann ◽  
Katherine Rendahl ◽  
...  

Abstract The t(4;14) translocation that occurs uniquely in a subset (15%) of multiple myeloma (MM) patients results in the ectopic expression of the receptor tyrosine kinase, Fibroblast Growth Factor Receptor3 (FGFR3). Wild-type FGFR3 induces proliferative signals in myeloma cells and appears to be weakly transforming in a hematopoeitic mouse model. The subsequent acquisition of FGFR3 activating mutations in some MM is associated with disease progression and is strongly transforming in several experimental models. The clinical impact of t(4;14) translocations has been demonstrated in several retrospective studies each reporting a marked reduction in overall survival. We have previously shown that inhibition of activated FGFR3 causes morphologic differentiation followed by apoptosis of FGFR3 expressing MM cell lines, validating activated FGFR3 as a therapeutic target in t(4;14) MM and encouraging the clinical development of FGFR3 inhibitors for the treatment of these poor-prognosis patients. CHIR258 is a small molecule kinase inhibitor that targets Class III–V RTKs and inhibits FGFR3 with an IC50 of 5 nM in an in vitro kinase assay. Potent anti-tumor and anti-angiogenic activity has been demonstrated in vitro and in vivo. We employed the IL-6 dependent cell line, B9 that has been engineered to express wild-type FGFR3 or active mutants of FGFR3 (Y373C, K650E, G384D and 807C), to screen CHIR258 for activity against FGFR3. CHIR258 differentially inhibited FGF-mediated growth of B9 expressing wild-type and mutant receptors found in MM, with an IC50 of 25 nM and 80 nM respectively as determined by MTT proliferation assay. Growth of these cells could be rescued by IL-6 demonstrating selectivity of CHIR258 for FGFR3. We then confirmed the activity of CHIR258 against FGFR3 expressing myeloma cells. CHIR258 inhibited the viability of FGFR3 expressing KMS11 (Y373C), KMS18 (G384D) and OPM-2 (K650E) cell lines with an IC50 of 100 nM, 250 nM and 80 nM, respectively. Importantly, inhibition with CHIR258 was still observed in the presence of IL-6, a potent growth factors for MM cells. U266 cells, which lack FGFR3 expression, displayed minimal growth inhibition demonstrating that at effective concentrations, CHIR258 exhibits minimal nonspecific cytotoxicity on MM cells. Further characterization of this finding demonstrated that inhibition of cell growth corresponded to G0/G1 cell cycle arrest and dose-dependent inhibition of downstream ERK phosphorylation. In responsive cell lines, CHIR258 induced apoptosis via caspase 3. In vitro combination analysis of CHIR258 and dexamethasone applied simultaneously to KMS11 cells indicated a synergistic interaction. In vivo studies demonstrated that CHIR258 induced tumor regression and inhibited growth of FGFR3 tumors in a plasmacytoma xenograft mouse model. Finally, CHIR258 produced cytotoxic responses in 4/5 primary myeloma samples derived from patients harboring a t(4;14) translocation. These data indicate that the small molecule inhibitor, CHIR258 potently inhibits FGFR3 and has activity against human MM cells setting the stage for a Phase I clinical trial of this compound in t(4;14) myeloma.


2006 ◽  
Vol 74 (2) ◽  
pp. 1360-1367 ◽  
Author(s):  
Laura Plant ◽  
Johanna Sundqvist ◽  
Susu Zughaier ◽  
Lena Lövkvist ◽  
David S. Stephens ◽  
...  

ABSTRACT Lipooligosaccharide (LOS) of Neisseria meningitidis has been implicated in meningococcal interaction with host epithelial cells and is a major factor contributing to the human proinflammatory response to meningococci. LOS mutants of the encapsulated N. meningitidis serogroup B strain NMB were used to further determine the importance of the LOS structure in in vitro adherence and invasion of human pharyngeal epithelial cells by meningococci and to study pathogenicity in a mouse (CD46 transgenic) model of meningococcal disease. The wild-type strain [NeuNAc-Galβ-GlcNAc-Galβ-Glcβ-Hep2 (GlcNAc, Glcα) 3-deoxy-d-manno-2-octulosonic acid (KDO2)-lipid A; 1,4′ bisphosphorylated], although poorly adherent, rapidly invaded an epithelial cell layer in vitro, survived and multiplied early in blood, reached the cerebrospinal fluid, and caused lethal disease in the mouse model. In contrast, the Hep2 (GlcNAc) KDO2-lipid A (pgm) mutant, which was highly adherent to cultured epithelial cells, caused significantly less bacteremia and mortality in the mouse model. The Hep2-KDO2-lipid A (rfaK) mutant was shown to be moderately adherent and to cause levels of bacteremia and mortality similar to those caused by the wild-type strain in the mouse model. The KDO2-lipid A (gmhB) mutant, which lacks the heptose disaccharide in the inner core of LOS, avidly attached to epithelial cells but was otherwise avirulent. Disease development correlated with expression of specific LOS structures and was associated with lower adherence but rapid meningococcal passage to and survival in the bloodstream, induction of proinflammatory cytokines, and the crossing of the blood-brain barrier. Taken together, the results of this study further define the importance of the LOS structure as a virulence component involved in multiple steps in the pathogenesis of N. meningitidis.


2006 ◽  
Vol 74 (12) ◽  
pp. 6907-6919 ◽  
Author(s):  
Andrea Hamilton ◽  
Carl Robinson ◽  
Iain C. Sutcliffe ◽  
Josh Slater ◽  
Duncan J. Maskell ◽  
...  

ABSTRACT Streptococcus equi is the causative agent of strangles, a prevalent and highly contagious disease of horses. Despite the animal suffering and economic burden associated with strangles, little is known about the molecular basis of S. equi virulence. Here we have investigated the contributions of a specific lipoprotein and the general lipoprotein processing pathway to the abilities of S. equi to colonize equine epithelial tissues in vitro and to cause disease in both a mouse model and the natural host in vivo. Colonization of air interface organ cultures after they were inoculated with a mutant strain deficient in the maturase lipoprotein (ΔprtM 138 - 213, with a deletion of nucleotides 138 to 213) was significantly less than that for cultures infected with wild-type S. equi strain 4047 or a mutant strain that was unable to lipidate preprolipoproteins (Δlgt 190 - 685). Moreover, mucus production was significantly greater in both wild-type-infected and Δlgt 190 - 685-infected organ cultures. Both mutants were significantly attenuated compared with the wild-type strain in a mouse model of strangles, although 2 of 30 mice infected with the Δlgt 190 - 685 mutant did still exhibit signs of disease. In contrast, only the ΔprtM 138 - 213 mutant was significantly attenuated in a pony infection study, with 0 of 5 infected ponies exhibiting pathological signs of strangles compared with 4 of 4 infected with the wild-type and 3 of 5 infected with the Δlgt 190 - 685 mutant. We believe that this is the first study to evaluate the contribution of lipoproteins to the virulence of a gram-positive pathogen in its natural host. These data suggest that the PrtM lipoprotein is a potential vaccine candidate, and further investigation of its activity and its substrate(s) are warranted.


2017 ◽  
Vol 63 (8) ◽  
pp. 730-738 ◽  
Author(s):  
Sabbir R. Shuvo ◽  
Uliana Kovaltchouk ◽  
Abdullah Zubaer ◽  
Ayush Kumar ◽  
William A.T. Summers ◽  
...  

Mitochondrial porin, which forms voltage-dependent anion-selective channels (VDAC) in the outer membrane, can be folded into a 19-β-stranded barrel. The N terminus of the protein is external to the barrel and contains α-helical structure. Targeted modifications of the N-terminal region have been assessed in artificial membranes, leading to different models for gating in vitro. However, the in vivo requirements for gating and the N-terminal segment of porin are less well-understood. Using Neurospora crassa porin as a model, the effects of a partial deletion of the N-terminal segment were investigated. The protein, ΔN2-12porin, is assembled into the outer membrane, albeit at lower levels than the wild-type protein. The resulting strain displays electron transport chain deficiencies, concomitant expression of alternative oxidase, and decreased growth rates. Nonetheless, its mitochondrial genome does not contain any significant mutations. Most of the genes that are expressed in high levels in porin-less N. crassa are expressed at levels similar to that of wild type or are slightly increased in ΔN2-12porin strains. Thus, although the N-terminal segment of VDAC is required for complete function in vivo, low levels of a protein lacking part of the N terminus are able to rescue some of the defects associated with the absence of porin.


Sign in / Sign up

Export Citation Format

Share Document