scholarly journals Quality Control of a Transcriptional Regulator by SUMO-Targeted Degradation

2009 ◽  
Vol 29 (7) ◽  
pp. 1694-1706 ◽  
Author(s):  
Zheng Wang ◽  
Gregory Prelich

ABSTRACT Slx5 and Slx8 are heterodimeric RING domain-containing proteins that possess SUMO-targeted ubiquitin ligase (STUbL) activity in vitro. Slx5-Slx8 and its orthologs are proposed to target SUMO conjugates for ubiquitin-mediated proteolysis, but the only in vivo substrate identified to date is mammalian PML, and the physiological importance of SUMO-targeted ubiquitylation remains largely unknown. We previously identified mutations in SLX5 and SLX8 by selecting for suppressors of a temperature-sensitive allele of MOT1, which encodes a regulator of TATA-binding protein. Here, we demonstrate that Mot1 is SUMOylated in vivo and that disrupting the Slx5-Slx8 pathway by mutation of the target lysines in Mot1, by deletion of SLX5 or the ubiquitin E2 UBC4, or by inhibition of the proteosome suppresses mot1-301 mutant phenotypes and increases the stability of the Mot1-301 protein. The Mot1-301 mutant protein is targeted for proteolysis by SUMOylation to a much greater extent than wild-type Mot1, suggesting a quality control mechanism. In support of this idea, growth of Saccharomyces cerevisiae in the presence of the arginine analog canavanine results in increased SUMOylation and Slx5-Slx8-mediated degradation of wild-type Mot1. These results therefore demonstrate that Mot1 is an in vivo STUbL target in yeast and suggest a role for SUMO-targeted degradation in protein quality control.

1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1999 ◽  
Vol 67 (5) ◽  
pp. 2225-2232 ◽  
Author(s):  
Gregory Govoni ◽  
François Canonne-Hergaux ◽  
Cheryl G. Pfeifer ◽  
Sandra L. Marcus ◽  
Scott D. Mills ◽  
...  

ABSTRACT Mutations at the Nramp1 locus in vivo cause susceptibility to infection by unrelated intracellular microbes.Nramp1 encodes an integral membrane protein abundantly expressed in the endosomal-lysosomal compartment of macrophages and is recruited to the phagosomal membrane following phagocytosis. The mechanism by which Nramp1 affects the biochemical properties of the phagosome to control microbial replication is unknown. To devise an in vitro assay for Nramp1 function, we introduced a wild-typeNramp1G169 cDNA into RAW 264.7 macrophages (which bear a homozygous mutant Nramp1D169 allele and thus are permissive to replication of specific intracellular parasites). Recombinant Nramp1 was expressed in a membranous compartment in RAW264.7 cells and was recruited to the membrane ofSalmonella typhimurium and Yersinia enterocolitica containing phagosomes. Evaluation of the antibacterial activity of RAW264.7 transfectants showed that expression of the recombinant Nramp1 protein abrogated intracellular replication of S. typhimurium. Studies with a replication-defectiveS. typhimurium mutant suggest that this occurs through an enhanced bacteriostatic activity. The effect of Nramp1 expression was specific, since (i) it was not seen in RAW264.7 transfectants overexpressing the closely related Nramp2 protein, and (ii) control RAW264.7 cells, Nramp1, and Nramp2 transfectants could all efficiently kill a temperature-sensitive, replication-defective mutant of S. typhimurium. Finally, increased antibacterial activity of the Nramp1 RAW264.7 transfectants was linked to increased phagosomal acidification, a distinguishing feature of primary macrophages expressing a wild-type Nramp1 allele. Together, these results indicate that transfection of Nramp1 cDNAs in the RAW264.7 macrophage cell line can be used as a direct assay to study both Nramp1 function and mechanism of action as well as to identify structure-function relationships in this protein.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Anthony Cyr ◽  
Lauran Chambers ◽  
Paul K. Waltz ◽  
Sean P. Whelan ◽  
Lauryn Kohut ◽  
...  

Background. Organ injury and dysfunction in sepsis accounts for significant morbidity and mortality. Adaptive cellular responses in the setting of sepsis prevent injury and allow for organ recovery. We and others have shown that part of the adaptive response includes regulation of cellular respiration and maintenance of a healthy mitochondrial population. Herein, we hypothesized that endotoxin-induced changes in hepatocyte mitochondrial respiration and homeostasis are regulated by an inducible nitric oxide synthase/nitric oxide (iNOS/NO)-mitochondrial reactive oxygen species (mtROS) signaling axis, involving activation of the NRF2 signaling pathway. Methods. Wild-type (C57Bl/6) or iNos-/- male mice were subjected to intraperitoneal lipopolysaccharide (LPS) injections to simulate endotoxemia. Individual mice were randomized to treatment with NO-releasing agent DPTA-NONOate, mtROS scavenger MitoTEMPO, or vehicle controls. Other mice were treated with scramble or Nrf2-specific siRNA via tail vein injection. Primary murine hepatocytes were utilized for in vitro studies with or without LPS stimulation. Oxygen consumption rates were measured to establish mitochondrial respiratory parameters. Western blotting, confocal microscopy with immunocytochemistry, and rtPCR were performed for analysis of iNOS as well as markers of both autophagy and mitochondrial biogenesis. Results. LPS treatment inhibited aerobic respiration in vitro in wild-type but not iNos-/- cells. Experimental endotoxemia in vivo or in vitro induced iNOS protein and mtROS production. However, induction of mtROS was dependent on iNOS expression. Furthermore, LPS-induced hepatic autophagy/mitophagy and mitochondrial biogenesis were significantly attenuated in iNos-/- mice or cells with NO or mtROS scavenging. These responses were rescued in iNos-/- mice via delivery of NO both in vivo and in vitro. Conclusions. These data suggest that regulation of mitochondrial quality control following hepatocyte LPS exposure is dependent at least in part on a NO-mtROS signaling network. Further investigation to identify specific agents that modulate this process may facilitate the prevention of organ injury in sepsis.


2007 ◽  
Vol 18 (5) ◽  
pp. 1953-1963 ◽  
Author(s):  
Nazli Ghaboosi ◽  
Raymond J. Deshaies

E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo.


2006 ◽  
Vol 26 (8) ◽  
pp. 2984-2998 ◽  
Author(s):  
Klaus H. Nielsen ◽  
Leos Valášek ◽  
Caroah Sykes ◽  
Antonina Jivotovskaya ◽  
Alan G. Hinnebusch

ABSTRACT We found that mutating the RNP1 motif in the predicted RRM domain in yeast eukaryotic initiation factor 3 (eIF3) subunit b/PRT1 (prt1-rnp1) impairs its direct interactions in vitro with both eIF3a/TIF32 and eIF3j/HCR1. The rnp1 mutation in PRT1 confers temperature-sensitive translation initiation in vivo and reduces 40S-binding of eIF3 to native preinitiation complexes. Several findings indicate that the rnp1 lesion decreases recruitment of eIF3 to the 40S subunit by HCR1: (i) rnp1 strongly impairs the association of HCR1 with PRT1 without substantially disrupting the eIF3 complex; (ii) rnp1 impairs the 40S binding of eIF3 more so than the 40S binding of HCR1; (iii) overexpressing HCR1-R215I decreases the Ts− phenotype and increases 40S-bound eIF3 in rnp1 cells; (iv) the rnp1 Ts− phenotype is exacerbated by tif32-Δ6, which eliminates a binding determinant for HCR1 in TIF32; and (v) hcr1Δ impairs 40S binding of eIF3 in otherwise wild-type cells. Interestingly, rnp1 also reduces the levels of 40S-bound eIF5 and eIF1 and increases leaky scanning at the GCN4 uORF1. Thus, the PRT1 RNP1 motif coordinates the functions of HCR1 and TIF32 in 40S binding of eIF3 and is needed for optimal preinitiation complex assembly and AUG recognition in vivo.


2005 ◽  
Vol 86 (10) ◽  
pp. 2817-2821 ◽  
Author(s):  
Ana M. Falcón ◽  
Ana Fernandez-Sesma ◽  
Yurie Nakaya ◽  
Thomas M. Moran ◽  
Juan Ortín ◽  
...  

It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 493-505 ◽  
Author(s):  
Kristi Wharton ◽  
Robert P Ray ◽  
Seth D Findley ◽  
Holly E Duncan ◽  
William M Gelbart

Abstract We have identified the molecular lesions associated with six point mutations in the Drosophila TGF-β homologue decapentaplegic (dpp). The sites of these mutations define residues within both the pro and ligand regions that are essential for dpp function in vivo. While all of these mutations affect residues that are highly conserved among TGF-β superfamily members, the phenotypic consequences of the different alleles are quite distinct. Through an analysis of these mutant phenotypes, both in cuticle preparations and with molecular probes, we have assessed the functional significance of specific residues that are conserved among the different members of the superfamily. In addition, we have tested for conditional genetic interactions between the different alleles. We show that two of the alleles are temperature sensitive for the embyronic functions of dpp, such that these alleles are not only embryonic viable as homozygotes but also partially complement other dpp hypomorphs at low temperatures. Our results are discussed with regard to in vitro mutagenesis data on other TGF-β-like molecules, as well as with regard to the regulation of dpp cell signaling in Drosophila.


2017 ◽  
Author(s):  
Erin Kate McNally ◽  
Christopher Brett

Lysosomal nutrient transporter proteins move lumenal products of biomaterial catabolism to the cytoplasm for reuse by the cell. Two mechanisms control their lifetimes: the ILF (IntraLumenal Fragment) and vReD (Vacuole REcycling and Degradation) pathways. But it is not clear if they function independently. Using S. cerevisiae as a model, here we show that the ILF pathway mediates constitutive turnover of the lysine transporter Ypq1 and zinc transporter Cot1-known vReD client proteins-in vivo and in vitro. In contrast, the vReD pathway mediates constitutive degradation of the amino acid transporter Vba4. Activation of TOR with cycloheximide enhances their degradation by these pathways. However, misfolding by heat stress shunts all three into the ILF pathway. Thus, both pathways control individual transporter lifetimes, although only the ILF pathway mediates protein quality control. The pathway chosen depends on protein fate: degradation is imminent by the ILF pathway, whereas the vReD pathway permits reuse.


2016 ◽  
Vol 113 (39) ◽  
pp. 11010-11015 ◽  
Author(s):  
Jun Zhang ◽  
Jinshan Ella Lin ◽  
Chinchu Harris ◽  
Fernanda Campos Mastrotti Pereira ◽  
Fan Wu ◽  
...  

Tight homeostatic regulation of the phytohormone auxin [indole-3-acetic acid (IAA)] is essential to plant growth. Auxin biosynthetic pathways and the processes that inactivate auxin by conjugation to amino acids and sugars have been thoroughly characterized. However, the enzyme that catalyzes oxidation of IAA to its primary catabolite 2-oxindole-3-acetic acid (oxIAA) remains uncharacterized. Here, we show that DIOXYGENASE FOR AUXIN OXIDATION 1 (DAO1) catalyzes formation of oxIAA in vitro and in vivo and that this mechanism regulates auxin homeostasis and plant growth. Null dao1-1 mutants contain 95% less oxIAA compared with wild type, and complementation of dao1 restores wild-type oxIAA levels, indicating that DAO1 is the primary IAA oxidase in seedlings. Furthermore, dao1 loss of function plants have altered morphology, including larger cotyledons, increased lateral root density, delayed sepal opening, elongated pistils, and reduced fertility in the primary inflorescence stem. These phenotypes are tightly correlated with DAO1 spatiotemporal expression patterns as shown by DAO1pro:β-glucuronidase (GUS) activity and DAO1pro:YFP-DAO1 signals, and transformation with DAO1pro:YFP-DAO1 complemented the mutant phenotypes. The dominant dao1-2D mutant has increased oxIAA levels and decreased stature with shorter leaves and inflorescence stems, thus supporting DAO1 IAA oxidase function in vivo. A second isoform, DAO2, is very weakly expressed in seedling root apices. Together, these data confirm that IAA oxidation by DAO1 is the principal auxin catabolic process in Arabidopsis and that localized IAA oxidation plays a role in plant morphogenesis.


1990 ◽  
Vol 10 (1) ◽  
pp. 324-332 ◽  
Author(s):  
U Vijayraghavan ◽  
J Abelson

We have investigated the role of a novel temperature-sensitive splicing mutation, prp18. We had previously demonstrated that an accumulation of the lariat intermediate of splicing occurred at the restrictive temperature in vivo. We have now used the yeast in vitro splicing system to show that extracts from this mutant strain are heat labile for the second reaction of splicing. The heat inactivation of prp18 extracts results from loss of activity of an exchangeable component. Inactivated prp18 extracts are complemented by heat-inactivated extracts from other mutants or by fractions from wild-type extracts. In heat-inactivated prp18 extracts, 40S splicing complexes containing lariat intermediate and exon 1 can assemble. The intermediates in this 40S complex can be chased to products by complementing extracts in the presence of ATP. Both complementation of extracts and chasing of the isolated prp18 spliceosomes takes place with micrococcal nuclease-treated extracts. Furthermore, the complementation profile with fractions of wild-type extracts indicates that the splicing defect results from a mutation in a previously designated factor required for the second step of splicing. The isolation of this mutant as temperature-sensitive lethal has also facilitated cloning of the wild-type allele by complementation.


Sign in / Sign up

Export Citation Format

Share Document