scholarly journals Swapping the Gene-Specific and Regional Silencing Specificities of the Hst1 and Sir2 Histone Deacetylases

2007 ◽  
Vol 27 (7) ◽  
pp. 2466-2475 ◽  
Author(s):  
Janet Mead ◽  
Ron McCord ◽  
Laura Youngster ◽  
Mandakini Sharma ◽  
Marc R. Gartenberg ◽  
...  

ABSTRACT Sir2 and Hst1 are NAD+-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes. Sir2 interacts with Sir3 and Sir4 to silence genes contained within the silent-mating-type loci and telomere chromosomal regions. To identify the determinants of gene-specific versus regional repression, we created a series of Hst1::Sir2 hybrids. Our analysis yielded two dual-specificity chimeras that were able to perform both regional and gene-specific repression. Regional silencing by the chimeras required Sir3 and Sir4, whereas gene-specific repression required Rfm1 and Sum1. Our findings demonstrate that the nonconserved N-terminal region and two amino acids within the enzymatic core domain account for cofactor specificity and proper targeting of these proteins. These results suggest that the differences in the silencing and repression functions of Sir2 and Hst1 may not be due to differences in enzymatic activities of the proteins but rather may be the result of distinct cofactor specificities.

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Pavel Karpov ◽  
Aleksey Raevsky ◽  
Maxim Korablyov ◽  
Yaroslav Blume

Currently, Dual Specificity YAK1-Related Kinases (MNB/DYRK) were found in slime molds, protista, fungi, and animals, but the existence of plant homologues is still unclear. In the present study, we have identified 14 potential plant homologues with the previously unknown functions, based on the strong sequence similarity. The results of bioinformatics analysis revealed their correspondence to DYRK1A, DYRK1B, DYRK3, and DYRK4. For two plant homologues of animal DYRK1A from Physcomitrella patens and Arabidopsis thaliana spatial structures of catalytic domains were predicted, as well as their complexes with ADP and selective inhibitor d15. Comparative analysis of 3D-structures of the human DYRK1A and plant homologues, their complexes with the specific inhibitors, and results of molecular dynamics confirm their structural and functional similarity with high probability. Preliminary data indicate the presence of potential MNB/DYRK specific phosphorylation sites in such proteins associated with plant cytoskeleton as plant microtubule-associated proteins WVD2 and WDL1, and FH5 and SCAR2 involved in the organization and polarity of the actin cytoskeleton and some kinesin-like microtubule motor proteins.


1993 ◽  
Vol 13 (10) ◽  
pp. 6357-6366
Author(s):  
R S Jones ◽  
W M Gelbart

As is typical of Polycomb-group loci, the Enhancer of zeste [E(z)] gene negatively regulates the segment identity genes of the Antennapedia (ANT-C) and Bithorax (BX-C) gene complexes. A second class of loci, collectively known as the trithorax group, plays an antagonistic role as positive regulators of the ANT-C and BX-C genes. Molecular analysis of the E(z) gene predicts a 760-amino-acid protein product. A region of 116 amino acids near the E(z) carboxy terminus is 41.2% identical (68.4% similar) with a carboxy-terminal region of the trithorax protein. This portion of the trithorax protein is part of a larger region previously shown to share extensive homology with a human protein (ALL-1/Hrx) that is implicated in acute leukemias. Over this same 116 amino acids, E(z) and ALL-1/Hrx are 43.9% identical (68.4% similar). Otherwise, E(z) is not significantly similar to any previously described proteins. As this region of sequence similarity is shared by two proteins with antagonistic functions, we suggest that it may comprise a domain that interacts with a common target, either nucleic acid or protein. Opposite effects on transcription might then be determined by other portions of the two proteins.


1992 ◽  
Vol 288 (1) ◽  
pp. 117-121 ◽  
Author(s):  
E P Ko ◽  
H Akatsuka ◽  
H Moriyama ◽  
A Shinmyo ◽  
Y Hata ◽  
...  

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.


2003 ◽  
Vol 371 (2) ◽  
pp. 443-449 ◽  
Author(s):  
Frank NEUSCHÄFER-RUBE ◽  
Eva ENGEMAIER ◽  
Sina KOCH ◽  
Ulrike BÖER ◽  
Gerhard P. PÜSCHEL

Prostanoid receptors belong to the class of heptahelical plasma membrane receptors. For the five prostanoids, eight receptor subtypes have been identified. They display an overall sequence similarity of roughly 30%. Based on sequence comparison, single amino acids in different subtypes of different species have previously been identified by site-directed mutagenesis or in hybrid receptors that appear to be essential for ligand binding or G-protein coupling. Based on this information, a series of mutants of the human FP receptor was generated and characterized in ligand-binding and second-messenger-formation studies. It was found that mutation of His-81 to Ala in transmembrane domain 2 and of Arg-291 to Leu in transmembrane domain 7, which are putative interaction partners for the prostanoid's carboxyl group, abolished ligand binding. Mutants in which Ser-263 in transmembrane domain 6 or Asp-300 in transmembrane domain 7 had been replaced by Ala or Gln, respectively, no longer discriminated between prostaglandins PGF2α and PGD2. Thus distortion of the topology of transmembrane domains 6 and 7 appears to interfere with the cyclopentane ring selectivity of the receptor. PGF2α-induced inositol formation was strongly reduced in the mutant Asp-300Gln, inferring a role for this residue in agonist-induced G-protein activation.


1994 ◽  
Vol 196 (1) ◽  
pp. 93-108
Author(s):  
D K Kakuda ◽  
C L MacLeod

Recent advances have made possible the isolation of the genes and their cDNAs encoding Na(+)-independent amino acid transporters. Two classes of amino acid 'uniporters' have been isolated. One class contains the mCAT (murine cationic amino acid transporter) gene family that encodes proteins predicted to span the membrane 12-14 times and exhibits structural properties similar to the GLUT (glucose transporter) family and to other well-known transporters. The other class consists of two known genes, rBAT (related to B system amino acid transporters) and 4F2hc, that share amino acid sequence similarity with alpha-amylases and alpha-glucosidases. They are type II glycoproteins predicted to span the membrane only once, yet they mediate the Na(+)-independent transport of cationic and zwitterionic amino acids in Xenopus oocytes. Mutations in the human rBAT gene have been identified by Palacín and his co-workers in several families suffering from a heritable form of cystinuria. This important finding clearly establishes a key role for rBAT in cystine transport. The two classes of amino acid transporters are compared with the well-studied GLUT family of Na(+)-independent glucose transporters.


Genetics ◽  
1997 ◽  
Vol 145 (2) ◽  
pp. 467-478 ◽  
Author(s):  
Rodger Voelker ◽  
Janet Mendel-Hartvig ◽  
Alice Barkan

A nuclear mutant of maize, tha1, which exhibited defects in the translocation of proteins across the thylakoid membrane, was described previously. A transposon insertion at the tha1 locus facilitated the cloning of portions of the tha1 gene. Strong sequence similarity with secA genes from bacteria, pea and spinach indicates that tha1 encodes a SecA homologue (cp-SecA). The tha1-ref allele is either null or nearly so, in that tha1 mRNA is undetectable in mutant leaves and cp-SecA accumulation is reduced ≥40-fold. These results, in conjunction with the mutant phenotype described previously, demonstrate that cp-SecA functions in vivo to facilitate the translocation of OEC33, PSI-F and plastocyanin but does not function in the translocation of OEC23 and OEC16. Our results confirm predictions for cp-Sed function made from the results of in vitro experiments and establish several new functions for cp-SecA, including roles in the targeting of a chloroplast-encoded protein, cytochrome f, and in protein targeting in the etioplast, a nonphotosynthetic plastid type. Our finding that the accumulation of properly targeted plastocyanin and cytochrome f in tha1-ref thylakoid membranes is reduced only a few-fold despite the near or complete absence of cp-SecA suggests that cp-SecA facilitates but is not essential in vivo for their translocation across the membrane.


2007 ◽  
Vol 73 (6) ◽  
pp. 1772-1782 ◽  
Author(s):  
Juhan Kim ◽  
Dohyun Kyung ◽  
Hyungdon Yun ◽  
Byung-Kwan Cho ◽  
Joo-Hyun Seo ◽  
...  

ABSTRACT A novel β-transaminase gene was cloned from Mesorhizobium sp. strain LUK. By using N-terminal sequence and an internal protein sequence, a digoxigenin-labeled probe was made for nonradioactive hybridization, and a 2.5-kb gene fragment was obtained by colony hybridization of a cosmid library. Through Southern blotting and sequence analysis of the selected cosmid clone, the structural gene of the enzyme (1,335 bp) was identified, which encodes a protein of 47,244 Da with a theoretical pI of 6.2. The deduced amino acid sequence of the β-transaminase showed the highest sequence similarity with glutamate-1-semialdehyde aminomutase of transaminase subgroup II. The β-transaminase showed higher activities toward d-β-aminocarboxylic acids such as 3-aminobutyric acid, 3-amino-5-methylhexanoic acid, and 3-amino-3-phenylpropionic acid. The β-transaminase has an unusually broad specificity for amino acceptors such as pyruvate and α-ketoglutarate/oxaloacetate. The enantioselectivity of the enzyme suggested that the recognition mode of β-aminocarboxylic acids in the active site is reversed relative to that of α-amino acids. After comparison of its primary structure with transaminase subgroup II enzymes, it was proposed that R43 interacts with the carboxylate group of the β-aminocarboxylic acids and the carboxylate group on the side chain of dicarboxylic α-keto acids such as α-ketoglutarate and oxaloacetate. R404 is another conserved residue, which interacts with the α-carboxylate group of the α-amino acids and α-keto acids. The β-transaminase was used for the asymmetric synthesis of enantiomerically pure β-aminocarboxylic acids. (3S)-Amino-3-phenylpropionic acid was produced from the ketocarboxylic acid ester substrate by coupled reaction with a lipase using 3-aminobutyric acid as amino donor.


2000 ◽  
Vol 66 (10) ◽  
pp. 4230-4236 ◽  
Author(s):  
Therese Faye ◽  
Thor Langsrud ◽  
Ingolf F. Nes ◽  
Helge Holo

ABSTRACT A collection of propionibacteria was screened for bacteriocin production. A new bacteriocin named propionicin T1 was isolated from two strains of Propionibacterium thoenii. This bacteriocin shows no sequence similarity to other bacteriocins. Propionicin T1 was active against all strains of Propionibacterium acidipropionici, Propionibacterium thoenii, andPropionibacterium jensenii tested and also againstLactobacillus sake NCDO 2714 but showed no activity againstPropionibacterium freudenreichii. The bacteriocin was purified, and the N-terminal part of the peptide was determined with amino acid sequencing. The corresponding gene pctA was sequenced, and this revealed that propionicin T1 is produced as a prebacteriocin of 96 amino acids with a typical sec leader, which is processed to give a mature bacteriocin of 65 amino acids. An open reading frame encoding a protein of 424 amino acids was found 68 nucleotides downstream the stop codon of pctA. The N-terminal part of this putative protein shows strong similarity with the ATP-binding cassette of prokaryotic and eukaryotic ABC transporters, and this protein may be involved in self-protection against propionicin T1. Propionicin T1 is the first bacteriocin from propionibacteria that has been isolated and further characterized at the molecular level.


2020 ◽  
Vol 66 (6) ◽  
pp. 1191-1203
Author(s):  
Rasha Aref ◽  
Hans-Joachim Schüller

Abstract Mapping of effective protein domains is a demanding stride to disclose the functional relationship between regulatory complexes. Domain analysis of protein interactions is requisite for understanding the pleiotropic responses of the respective partners. Cti6 is a multifunctional regulator for which we could show recruitment of co-repressors Sin3, Cyc8 and Tup1. However, the responsible core domain tethering Cti6 to these co-repressors is poorly understood. Here, we report the pivotal domain of Cti6 that is indispensable for co-repressor recruitment. We substantiated that amino acids 450–506 of Cti6 bind PAH2 of Sin3. To analyse this Cti6–Sin3 Interaction Domain (CSID) in more detail, selected amino acids within CSID were replaced by alanine. It is revealed that hydrophobic amino acids V467, L481 and L491 L492 L493 are important for Cti6–Sin3 binding. In addition to PAH2 of Sin3, CSID also binds to tetratricopeptide repeats (TPR) of Cyc8. Indeed, we could demonstrate Cti6 recruitment to promoters of genes, such as RNR3 and SMF3, containing iron-responsive elements (IRE). Importantly, Sin3 is also recruited to these promoters but only in the presence of functional Cti6. Our findings provide novel insights toward the critical interaction domain in the co-regulator Cti6, which is a component of regulatory complexes that are closely related to chromatin architecture and the epigenetic status of genes that are regulated by pleiotropic co-repressors.


Sign in / Sign up

Export Citation Format

Share Document