scholarly journals Potentiation of Astrogliogenesis by STAT3-Mediated Activation of Bone Morphogenetic Protein-Smad Signaling in Neural Stem Cells

2007 ◽  
Vol 27 (13) ◽  
pp. 4931-4937 ◽  
Author(s):  
Shinji Fukuda ◽  
Masahiko Abematsu ◽  
Hiroyuki Mori ◽  
Makoto Yanagisawa ◽  
Tetsushi Kagawa ◽  
...  

ABSTRACT Astrocytes play important roles in brain development and injury response. Transcription factors STAT3 and Smad1, activated by leukemia inhibitory factor (LIF) and bone morphogenetic protein 2 (BMP2), respectively, form a complex with the coactivator p300 to synergistically induce astrocytes from neuroepithelial cells (NECs) (K. Nakashima, M. Yanagisawa, H. Arakawa, N. Kimura, T. Hisatsune, M. Kawabata, K. Miyazono, and T. Taga, Science 284:479-482, 1999). However, the mechanisms that govern astrogliogenesis during the determination of the fate of neural stem cells remain elusive. Here we found that LIF induces expression of BMP2 via STAT3 activation and leads to the consequent activation of Smad1 to efficiently promote astrogliogenic differentiation of NECs. The BMP antagonist Noggin abrogated LIF-induced Smad1 activation and astrogliogenesis by inhibiting BMPs produced by NECs. NECs deficient in suppressor of cytokine signaling 3 (SOCS3), a negative regulator of STAT3, readily differentiated into astrocytes upon activation by LIF not only due to sustained activation of STAT3 but also because of the consequent activation of Smad1. Our study suggests a novel LIF-triggered positive regulatory loop that enhances astrogliogenesis.

1998 ◽  
Vol 10 (8) ◽  
pp. 551 ◽  
Author(s):  
Martin F. Pera ◽  
Daniella Herszfeld

Pluripotent human teratocarcinoma stem cells cultured in vitro provide a resource for the study of early embryonic development in man, as well as a means for discovery of novel factors controlling cell differentiation and commitment. We previously reported that the human teratocarcinoma stem cell line GCT 27X-1 could be induced to differentiate into an endodermal progenitor cell by treatment with high doses of retinoic acid. A search for polypeptide inducers of differentiation in this system has identified bone morphogenetic protein-2 (BMP-2) as a potent inducer of differentiation. In cell line GCT 27X-1, treatment with BMP-2 reduces proliferation, induces morphological changes similar to obtained following treatment with retinoic acid, and causes a decrease in the expression of transcripts for the stem cell markers CD30 and Oct-4. Preliminary immunochemical studies indicate that the differentiated cells produced by BMP-2 are endodermal precursors with a pattern of marker expression similar to that found in retinoic acid treated cells. Models of endoderm differentiation in humans will be useful for identifying the molecules which mediate cell interactions in development, and in achieving directed differentiation of cells for use in transplantation.


Sign in / Sign up

Export Citation Format

Share Document