scholarly journals Structure and molecular analysis of RGR1, a gene required for glucose repression of Saccharomyces cerevisiae.

1990 ◽  
Vol 10 (8) ◽  
pp. 4130-4138 ◽  
Author(s):  
A Sakai ◽  
Y Shimizu ◽  
S Kondou ◽  
T Chibazakura ◽  
F Hishinuma

An RGR1 gene product is required to repress expression of glucose-regulated genes in Saccharomyces cerevisiae. The abnormal morphology of rgr1 cells was studied. Scanning and transmission electron microscopic observations revealed that the cell wall of the daughter cell remained attached to that of mother cell. We cloned the RGR1 gene by complementation and showed that the cloned DNA was tightly linked to the chromosomal RGR1 locus. The cloned RGR1 gene suppressed all of the phenotypes caused by the mutation and encoded a 3.6-kilobase poly(A)+ RNA. The RGR1 gene is located on chromosome XII, as determined by pulsed-field gel electrophoresis, and we mapped rgr1 between gal2 and pep3 by genetic analysis. rgr1 was shown to be a new locus. We also determined the nucleotide sequence of RGR1, which was predicted to encode a 123-kilodalton protein. The null mutation resulted in lethality, indicating that the RGR1 gene is essential for growth. On the other hand, a carboxy-terminal deletion of the gene caused phenotypes similar to but more severe than those caused by the original mutation. The amount of reserve carbohydrates was reduced in rgr1 cells. Possible functions of the RGR1 product are discussed.

1990 ◽  
Vol 10 (8) ◽  
pp. 4130-4138
Author(s):  
A Sakai ◽  
Y Shimizu ◽  
S Kondou ◽  
T Chibazakura ◽  
F Hishinuma

An RGR1 gene product is required to repress expression of glucose-regulated genes in Saccharomyces cerevisiae. The abnormal morphology of rgr1 cells was studied. Scanning and transmission electron microscopic observations revealed that the cell wall of the daughter cell remained attached to that of mother cell. We cloned the RGR1 gene by complementation and showed that the cloned DNA was tightly linked to the chromosomal RGR1 locus. The cloned RGR1 gene suppressed all of the phenotypes caused by the mutation and encoded a 3.6-kilobase poly(A)+ RNA. The RGR1 gene is located on chromosome XII, as determined by pulsed-field gel electrophoresis, and we mapped rgr1 between gal2 and pep3 by genetic analysis. rgr1 was shown to be a new locus. We also determined the nucleotide sequence of RGR1, which was predicted to encode a 123-kilodalton protein. The null mutation resulted in lethality, indicating that the RGR1 gene is essential for growth. On the other hand, a carboxy-terminal deletion of the gene caused phenotypes similar to but more severe than those caused by the original mutation. The amount of reserve carbohydrates was reduced in rgr1 cells. Possible functions of the RGR1 product are discussed.


1996 ◽  
Vol 42 (12) ◽  
pp. 1190-1196 ◽  
Author(s):  
István Balogh ◽  
Anna Maráz

Hybrid yeast strains were constructed using haploid Saccharomyces cerevisiae and Saccharomyces cerevisiae var. diastaticus strains to get haploid meiotic recombinants having more than one copy of STA1, STA2, and STA3 genes. STA genes were localized on the chromosomes by pulsed field gel electrophoresis. Working gene dosage effects were found among STA genes in liquid starch medium, indicating low levels of glucose repression. Growth of strains, however, was not influenced by their STA copy number.Key words: yeast, STA genes, gene dosage, karyotyping.


Author(s):  
Veronika Burmeister ◽  
R. Swaminathan

Porphyria cutanea tarda (PCT) is a disorder of porphyrin metabolism which occurs most often during middle age. The disease is characterized by excessive production of uroporphyrin which causes photosensitivity and skin eruptions on hands and arms, due to minor trauma and exposure to sunlight. The pathology of the blister is well known, being subepidermal with epidermodermal separation, it is not always absolutely clear, whether the basal lamina is attached to the epidermis or the dermis. The purpose of our investigation was to study the attachment of the basement membrane in the blister by comparing scanning with transmission electron microscopy.


Author(s):  
J. W. Horn ◽  
B. J. Dovey-Hartman ◽  
V. P. Meador

Osmium tetroxide (OsO4) is a universally used secondary fixative for routine transmission electron microscopic evaluation of biological specimens. Use of OsO4 results in good ultrastructural preservation and electron density but several factors, such as concentration, length of exposure, and temperature, impact overall results. Potassium ferricyanide, an additive used primarily in combination with OsO4, has mainly been used to enhance the contrast of lipids, glycogen, cell membranes, and membranous organelles. The purpose of this project was to compare the secondary fixative solutions, OsO4 vs. OsO4 with potassium ferricyanide, and secondary fixative temperature for determining which combination gives optimal ultrastructural fixation and enhanced organelle staining/contrast.Fresh rat liver samples were diced to ∼1 mm3 blocks, placed into porous processing capsules/baskets, preserved in buffered 2% formaldehyde/2.5% glutaraldehyde solution, and rinsed with 0.12 M cacodylate buffer (pH 7.2). Tissue processing capsules were separated (3 capsules/secondary fixative.solution) and secondarily fixed (table) for 90 minutes. Tissues were buffer rinsed, dehydrated with ascending concentrations of ethanol solutions, infiltrated, and embedded in epoxy resin.


Author(s):  
M.G. Hamilton ◽  
T.T. Herskovits ◽  
J.S. Wall

The hemocyanins of molluscs are aggregates of a cylindrical decameric subparticle that assembles into di-, tri-, tetra-, penta-, and larger multi-decameric particles with masses that are multiples of the 4.4 Md decamer. Electron micrographs of these hemocyanins typically show the particles with two profiles: circular representing the cylinder viewed from the end and rectangular representing the side-view of the hollow cylinder.The model proposed by Mellema and Klug from image analysis of a didecameric hemocyanin with the two decamers facing one another with collar (closed) ends outward fits the appearance of side-views of the negatively-stained cylinders. These authors also suggested that there might be caps at the ends. In one of a series of transmission electron microscopic studies of molluscan hemocyanins, Siezen and Van Bruggen supported the Mellema-Klug model, but stated that they had never observed a cap component. With STEM we have tested the end cap hypothesis by direct mass measurements across the end-views of unstained particles.


Author(s):  
J. E. O’Neal ◽  
K. K. Sankaran ◽  
S. M. L. Sastry

Rapid solidification of a molten, multicomponent alloy against a metallic substrate promotes greater microstructural homogeneity and greater solid solubility of alloying elements than can be achieved by slower-cooling casting methods. The supersaturated solid solutions produced by rapid solidification can be subsequently annealed to precipitate, by controlled phase decomposition, uniform 10-100 nm precipitates or dispersoids. TEM studies were made of the precipitation of metastable Al3Li(δ’) and equilibrium AL3H phases and the deformation characteristics of a rapidly solidified Al-3Li-0.2Ti alloy.


1989 ◽  
Vol 4 (4) ◽  
pp. 795-801 ◽  
Author(s):  
C. J. Jou ◽  
J. Washburn

A nucleation-and-growth mechanism for the twin formation in YBa2Cu3O7–δ superconductors based on the oxygen uptake rate curve and published transmission electron microscopic observations is proposed together with an oxygen-depleted twin boundary model. The difficulty of reaching stoichiometric YBa2Cu3O7 is explained.


Sign in / Sign up

Export Citation Format

Share Document