Sequences within an upstream activation site in the yeast enolase gene ENO2 modulate repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1

1990 ◽  
Vol 10 (9) ◽  
pp. 4863-4871
Author(s):  
J P Holland ◽  
P K Brindle ◽  
M J Holland

Transcription of the yeast enolase gene ENO2 is reduced 20- to 50-fold in strains carrying a null mutation in the positive regulatory gene GCR1. A small deletion mutation within one of two upstream activation sites (UAS elements) in the 5'-flanking region of ENO2 permitted wild-type levels of ENO2 gene expression in a strain carrying the gcr1 null mutation. These data show that sequences required for UAS element activity in GCR1 strains were required to repress ENO2 expression in a gcr1 strain. Protein factors that specifically bound to this UAS/repression site were identified. We show that the DNA-binding protein ABFI (autonomously replicating sequence-binding factor) is the major protein which binds the UAS/repression site. Minor DNA-binding activities that interact specifically with the UAS/repression site were also identified and may correspond to proteolytic breakdown products of ABFI. None of the observed binding activities were encoded by the GCR1 structural gene. A double-stranded oligonucleotide that included the UAS/repression site activated transcription of UAS-less ENO1 and ENO2 gene cassettes in vivo to wild-type levels in strains carrying the GCR1 allele as well as the gcr1 null mutation. These latter data show that the UAS/repression site is sufficient for transcriptional activation but is not sufficient to repress transcription of the enolase genes in a gcr1 genetic background.

1990 ◽  
Vol 10 (9) ◽  
pp. 4863-4871 ◽  
Author(s):  
J P Holland ◽  
P K Brindle ◽  
M J Holland

Transcription of the yeast enolase gene ENO2 is reduced 20- to 50-fold in strains carrying a null mutation in the positive regulatory gene GCR1. A small deletion mutation within one of two upstream activation sites (UAS elements) in the 5'-flanking region of ENO2 permitted wild-type levels of ENO2 gene expression in a strain carrying the gcr1 null mutation. These data show that sequences required for UAS element activity in GCR1 strains were required to repress ENO2 expression in a gcr1 strain. Protein factors that specifically bound to this UAS/repression site were identified. We show that the DNA-binding protein ABFI (autonomously replicating sequence-binding factor) is the major protein which binds the UAS/repression site. Minor DNA-binding activities that interact specifically with the UAS/repression site were also identified and may correspond to proteolytic breakdown products of ABFI. None of the observed binding activities were encoded by the GCR1 structural gene. A double-stranded oligonucleotide that included the UAS/repression site activated transcription of UAS-less ENO1 and ENO2 gene cassettes in vivo to wild-type levels in strains carrying the GCR1 allele as well as the gcr1 null mutation. These latter data show that the UAS/repression site is sufficient for transcriptional activation but is not sufficient to repress transcription of the enolase genes in a gcr1 genetic background.


1990 ◽  
Vol 10 (6) ◽  
pp. 3194-3203 ◽  
Author(s):  
A Andrianopoulos ◽  
M J Hynes

The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of five structural genes involved in the catabolism of certain amides (amdS), omega amino acids (gatA and gabA), and lactams (lamA and lamB) in the presence of omega amino acid inducers. Analysis of the amdR gene showed that it contains three small introns, heterogeneous 5' and 3' transcription sites, and multiple AUG codons prior to the major AUG initiator. The predicted amdR protein sequence has a cysteine-rich "zinc finger" DNA-binding motif at the amino-terminal end, four putative acidic transcription activation motifs in the carboxyl-terminal half, and two sequences homologous to the simian virus 40 large T antigen nuclear localization motif. These nuclear localization sequences overlap the cysteine-rich DNA-binding motif. A series of 5', 3', and internal deletions were examined in vivo for transcription activator function and showed that the amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator regions may function independently, but both are required for wild-type levels of transcription activation. A number of the amdR deletion products were found to compete with the wild-type amdR product in vivo. Development of a rapid method for the localization of amdR mutations is presented, and using this technique, we localized and sequenced the mutation in the semiconstitutive amdR6c allele. The amdR6c missense mutation occurs in the middle of the gene, and it is suggested that it results in an altered protein which activates gene expression efficiently in the absence of an inducer.


1990 ◽  
Vol 10 (9) ◽  
pp. 4872-4885
Author(s):  
P K Brindle ◽  
J P Holland ◽  
C E Willett ◽  
M A Innis ◽  
M J Holland

Binding sites for three distinct proteins were mapped within the upstream activation sites (UAS) of the yeast enolase genes ENO1 and ENO2. Sequences that overlapped the UAS1 elements of both enolase genes bound a protein which was identified as the product of the RAP1 regulatory gene. Sequences within the UAS2 element of the ENO2 gene bound a second protein which corresponded to the ABFI (autonomously replicating sequence-binding factor) protein. A protein designated EBF1 (enolase-binding factor) bound to sequences which overlapped the UAS2 element in ENO1. There was a good correlation among all of the factor-binding sites and the location of sequences required for UAS activity identified by deletion mapping analysis. This observation suggested that the three factors play a role in transcriptional activation of the enolase genes. UAS elements which bound the RAP1 protein or the ABFI protein modulated glucose-dependent induction of ENO1 and ENO2 expression. The ABFI-binding site in ENO2 overlapped sequences required for UAS2 activity in wild-type strains and for repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1. These latter results showed that the ABFI protein, like the RAP1 protein, bound sequences required for positive as well as negative regulation of gene expression. These observations strongly suggest that the biological functions of the RAP1 and ABFI proteins are similar.


1984 ◽  
Vol 4 (8) ◽  
pp. 1521-1527
Author(s):  
T E Torchia ◽  
R W Hamilton ◽  
C L Cano ◽  
J E Hopper

In Saccharomyces cerevisiae, the transcriptional expression of the galactose-melibiose catabolic pathway genes is under the control of at least three regulatory genes, GAL4, GAL80, and GAL3. We have isolated the GAL80 gene and have studied the effect of a null mutation on the carbon-controlled regulation of the MEL1 and GAL cluster genes. The null mutation was achieved in vivo by replacing the chromosomal wild-type GAL80 allele with an in vitro-created GAL80 deletion-disruption mutation. Enzyme activities and RNA levels for the GAL cluster and MEL1 genes were constitutively expressed in the null mutant strain grown on glycerol-lactate and were higher than in the isogenic wild-type yeast strain when compared after growth on galactose. Carbon catabolite repression of the GAL cluster and MEL1 genes, which occurs at the level of transcription, is retained in the null mutant. Deletion of the GAL80 gene in a gal4 cell does not restore GAL cluster and MEL1 gene expression. The data demonstrate that (i) the GAL80 protein is a purely negative regulator, (ii) the GAL80 protein does not mediate carbon catabolite repression, and (iii) the GAL4 protein is not simply an antagonizer of GAL80-mediated repression.


1984 ◽  
Vol 4 (8) ◽  
pp. 1521-1527 ◽  
Author(s):  
T E Torchia ◽  
R W Hamilton ◽  
C L Cano ◽  
J E Hopper

In Saccharomyces cerevisiae, the transcriptional expression of the galactose-melibiose catabolic pathway genes is under the control of at least three regulatory genes, GAL4, GAL80, and GAL3. We have isolated the GAL80 gene and have studied the effect of a null mutation on the carbon-controlled regulation of the MEL1 and GAL cluster genes. The null mutation was achieved in vivo by replacing the chromosomal wild-type GAL80 allele with an in vitro-created GAL80 deletion-disruption mutation. Enzyme activities and RNA levels for the GAL cluster and MEL1 genes were constitutively expressed in the null mutant strain grown on glycerol-lactate and were higher than in the isogenic wild-type yeast strain when compared after growth on galactose. Carbon catabolite repression of the GAL cluster and MEL1 genes, which occurs at the level of transcription, is retained in the null mutant. Deletion of the GAL80 gene in a gal4 cell does not restore GAL cluster and MEL1 gene expression. The data demonstrate that (i) the GAL80 protein is a purely negative regulator, (ii) the GAL80 protein does not mediate carbon catabolite repression, and (iii) the GAL4 protein is not simply an antagonizer of GAL80-mediated repression.


1990 ◽  
Vol 10 (9) ◽  
pp. 4872-4885 ◽  
Author(s):  
P K Brindle ◽  
J P Holland ◽  
C E Willett ◽  
M A Innis ◽  
M J Holland

Binding sites for three distinct proteins were mapped within the upstream activation sites (UAS) of the yeast enolase genes ENO1 and ENO2. Sequences that overlapped the UAS1 elements of both enolase genes bound a protein which was identified as the product of the RAP1 regulatory gene. Sequences within the UAS2 element of the ENO2 gene bound a second protein which corresponded to the ABFI (autonomously replicating sequence-binding factor) protein. A protein designated EBF1 (enolase-binding factor) bound to sequences which overlapped the UAS2 element in ENO1. There was a good correlation among all of the factor-binding sites and the location of sequences required for UAS activity identified by deletion mapping analysis. This observation suggested that the three factors play a role in transcriptional activation of the enolase genes. UAS elements which bound the RAP1 protein or the ABFI protein modulated glucose-dependent induction of ENO1 and ENO2 expression. The ABFI-binding site in ENO2 overlapped sequences required for UAS2 activity in wild-type strains and for repression of ENO2 expression in strains carrying a null mutation in the positive regulatory gene GCR1. These latter results showed that the ABFI protein, like the RAP1 protein, bound sequences required for positive as well as negative regulation of gene expression. These observations strongly suggest that the biological functions of the RAP1 and ABFI proteins are similar.


1990 ◽  
Vol 10 (6) ◽  
pp. 3194-3203
Author(s):  
A Andrianopoulos ◽  
M J Hynes

The positively acting regulatory gene amdR of Aspergillus nidulans coordinately regulates the expression of five structural genes involved in the catabolism of certain amides (amdS), omega amino acids (gatA and gabA), and lactams (lamA and lamB) in the presence of omega amino acid inducers. Analysis of the amdR gene showed that it contains three small introns, heterogeneous 5' and 3' transcription sites, and multiple AUG codons prior to the major AUG initiator. The predicted amdR protein sequence has a cysteine-rich "zinc finger" DNA-binding motif at the amino-terminal end, four putative acidic transcription activation motifs in the carboxyl-terminal half, and two sequences homologous to the simian virus 40 large T antigen nuclear localization motif. These nuclear localization sequences overlap the cysteine-rich DNA-binding motif. A series of 5', 3', and internal deletions were examined in vivo for transcription activator function and showed that the amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator amdR product contains at least two activation regions in the carboxyl-terminal half. Each of these activator regions may function independently, but both are required for wild-type levels of transcription activation. A number of the amdR deletion products were found to compete with the wild-type amdR product in vivo. Development of a rapid method for the localization of amdR mutations is presented, and using this technique, we localized and sequenced the mutation in the semiconstitutive amdR6c allele. The amdR6c missense mutation occurs in the middle of the gene, and it is suggested that it results in an altered protein which activates gene expression efficiently in the absence of an inducer.


2001 ◽  
Vol 183 (1) ◽  
pp. 387-392 ◽  
Author(s):  
Amy E. Trott ◽  
Ann M. Stevens

ABSTRACT PCR-based site-directed mutagenesis has been used to generate 38 alanine-substitution mutations in the C-terminal 41 amino acid residues of LuxR. This region plays a critical role in the mechanism of LuxR-dependent transcriptional activation of the Vibrio fischeri lux operon during quorum sensing. The ability of the variant forms of LuxR to activate transcription of the lux operon was examined by using in vivo assays in recombinant Escherichia coli. Eight recombinant strains produced luciferase at levels less than 50% of that of a strain expressing wild-type LuxR. Western immunoblotting analysis verified that the altered forms of LuxR were expressed at levels equivalent to those of the wild type. An in vivo DNA binding-repression assay in recombinant E. coli was subsequently used to measure the ability of the variant forms of LuxR to bind to the lux box, the binding site of LuxR at thelux operon promoter. All eight LuxR variants found to affect cellular luciferase levels were unable to bind to thelux box. An additional 11 constructs that had no effect on cellular luciferase levels were also found to exhibit a defect in DNA binding. None of the alanine substitutions in LuxR affected activation of transcription of the lux operon without also affecting DNA binding. These results support the conclusion that the C-terminal 41 amino acids of LuxR are important for DNA recognition and binding of the lux box rather than positive control of the process of transcription initiation.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.


Sign in / Sign up

Export Citation Format

Share Document