scholarly journals Expression of laminin γ 1 cultured hepatocytes involves repeated CTC and GC elements in the LAMC1 promoter

1996 ◽  
Vol 313 (3) ◽  
pp. 745-752 ◽  
Author(s):  
Françoise LEVAVASSEUR ◽  
Jocelyne LIÉTARD ◽  
Kohei OGAWA ◽  
Nathalie THÉRET ◽  
Peter D. BURBELO ◽  
...  

Laminin γ1 chain is present in all basement membranes and is expressed at high levels in various diseases, such as hepatic fibrosis. We have identified cis- and trans-acting elements involved in the regulation of this gene in normal rat liver, as well as in hepatocyte primary cultures and hepatoma cell lines. Northern-blot analyses showed that laminin γ1 mRNA was barely detectable in freshly isolated hepatocytes and expressed at high levels in hepatocyte primary cultures, as early as 4 h after liver dissociation. Actinomycin D and cycloheximide treatment in vivo and in vitro indicated that laminin γ1 overexpression in cultured hepatocytes was under the control of transcriptional mechanisms. Transfection of deletion mutants of the 5´ flanking region of murine LAMC1 gene in hepatoma cells that constitutively express laminin γ1 indicated that regulatory elements were located between -594 bp and -94 bp. This segment included GC- and CTC-containing motifs. Gel-shift analyses showed that two complexes were resolved with different affinity for the CTC sequence depending on the location of the GC box. The pattern of complex formation with nuclear factors from freshly isolated and cultured hepatocytes was different from that obtained with total liver and similar to that with hepatoma cells. Southwestern analysis indicated that several polypeptides bound the CTC-rich sequence. Affinity chromatography demonstrated that a Mr 60000 polypeptide was a major protein binding to the CTC motif. This polypeptide is probably involved in the transcriptional activation of various proto-oncogenes and extracellular matrix genes that are expressed at high levels in both hepatoma cells and early hepatocyte cultures.

1996 ◽  
Vol 16 (6) ◽  
pp. 2777-2786 ◽  
Author(s):  
V Gailus-Durner ◽  
J Xie ◽  
C Chintamaneni ◽  
A K Vershon

The meiosis-specific gene HOP1, which encodes a component of the synaptonemal complex, is controlled through two regulatory elements, UASH and URS1H. Sites similar to URS1H have been identified in the promoter region of virtually every early meiosis-specific gene, as well as in many promoters of nonmeiotic genes, and it has been shown that the proteins that bind to this site function to regulate meiotic and nonmeiotic transcription. Sites similar to the UASH site have been found in a number of meiotic and nonmeiotic genes as well. Since it has been shown that UASH functions as an activator site in vegetative haploid cells, it seemed likely that the factors binding to this site regulate both meiotic and nonmeiotic transcription. We purified the factor binding to the UASH element of the HOP1 promoter. Sequence analysis identified the protein as Abf1 (autonomously replicating sequence-binding factor 1), a multifunctional protein involved in DNA replication, silencing, and transcriptional regulation. We show by mutational analysis of the UASH site, that positions outside of the proposed UASH consensus sequence (TNTGN[A/T]GT) are required for DNA binding in vitro and transcriptional activation in vivo. A new UASH consensus sequence derived from this mutational analysis closely matches a consensus Abf1 binding site. We also show that an Abf1 site from a nonmeiotic gene can replace the function of the UASH site in the HOP1 promoter. Taken together, these results show that Abf1 functions to regulate meiotic gene expression.


2004 ◽  
Vol 78 (12) ◽  
pp. 6459-6468 ◽  
Author(s):  
Jeffrey S. Johnson ◽  
Yvonne N. Osheim ◽  
Yuming Xue ◽  
Margaux R. Emanuel ◽  
Peter W. Lewis ◽  
...  

ABSTRACT Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is highly basic, and an estimated 1070 copies associate with each viral genome, forming a tightly condensed DNA-protein complex. We have investigated DNA condensation, transcriptional repression, and specific protein binding by protein VII. Xenopus oocytes were microinjected with mRNA encoding HA-tagged protein VII and prepared for visualization of lampbrush chromosomes. Immunostaining revealed that protein VII associated in a uniform manner across entire chromosomes. Furthermore, the chromosomes were significantly condensed and transcriptionally silenced, as judged by the dramatic disappearance of transcription loops characteristic of lampbrush chromosomes. During infection, the protein VII-DNA complex may be the initial substrate for transcriptional activation by cellular factors and the viral E1A protein. To investigate this possibility, mRNAs encoding E1A and protein VII were comicroinjected into Xenopus oocytes. Interestingly, whereas E1A did not associate with chromosomes in the absence of protein VII, expression of both proteins together resulted in significant association of E1A with lampbrush chromosomes. Binding studies with proteins produced in bacteria or human cells or by in vitro translation showed that E1A and protein VII can interact in vitro. Structure-function analysis revealed that an N-terminal region of E1A is responsible for binding to protein VII. These studies define the in vivo functions of protein VII in DNA binding, condensation, and transcriptional repression and indicate a role in E1A-mediated transcriptional activation of viral genes.


2001 ◽  
Vol 183 (14) ◽  
pp. 4190-4201 ◽  
Author(s):  
Luı́s Jaime Mota ◽  
Leonor Morais Sarmento ◽  
Isabel de Sá-Nogueira

ABSTRACT The proteins involved in the utilization of l-arabinose by Bacillus subtilis are encoded by thearaABDLMNPQ-abfA metabolic operon and by thearaE/araR divergent unit. Transcription from the ara operon, araE transport gene, andaraR regulatory gene is induced by l-arabinose and negatively controlled by AraR. The purified AraR protein binds cooperatively to two in-phase operators within thearaABDLMNPQ-abfA (ORA1 and ORA2) and araE (ORE1 and ORE2) promoters and noncooperatively to a single operator in the araR (ORR3) promoter region. Here, we have investigated how AraR controls transcription from theara regulon in vivo. A deletion analysis of theara promoters region showed that the five AraR binding sites are the key cis-acting regulatory elements of their corresponding genes. Furthermore, ORE1-ORE2 and ORR3 are auxiliary operators for the autoregulation ofaraR and the repression of araE, respectively. Analysis of mutations designed to prevent cooperative binding of AraR showed that in vivo repression of the ara operon requires communication between repressor molecules bound to two properly spaced operators. This communication implicates the formation of a small loop by the intervening DNA. In an in vitro transcription system, AraR alone sufficed to abolish transcription from thearaABDLMNPQ-abfA operon and araEpromoters, strongly suggesting that it is the major protein involved in the repression mechanism of l-arabinose-inducible expression in vivo. The ara regulon is an example of how the architecture of the promoters is adapted to respond to the particular characteristics of the system, resulting in a tight and flexible control.


2006 ◽  
Vol 188 (20) ◽  
pp. 7082-7089 ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Gabriela González-Cerón ◽  
Luis Servín-González

ABSTRACT Expression of the Streptomyces exfoliatus lipA gene, which encodes an extracellular lipase, depends on LipR, a transcriptional activator that belongs to the STAND class of P-loop nucleoside triphosphatases. LipR is closely related to activators present in some antibiotic biosynthesis clusters of actinomycetes, forming the LipR/TchG family of regulators. In this work we showed that purified LipR protein is essential for activation of lipA transcription in vitro and that this transcription depends on the presence of a conserved inverted repeat, the LipR box, located upstream of the lipA promoter. Mutagenesis of the lipA promoter region indicated that most transcription depends on LipR binding to the proximal half-site of the LipR box in close proximity to the −35 region of the promoter. Our experiments also indicated that LipR establishes contact with the RNA polymerase on both sides of the LipR box, since some activation was observed when only the distal half-site was present or when the entire LipR box was moved further upstream. We also showed that the LipR proteins of S. exfoliatus and Streptomyces coelicolor are functionally interchangeable both in vitro and in vivo, revealing the functional conservation of the regulatory elements in these two species.


2002 ◽  
Vol 22 (1) ◽  
pp. 161-170 ◽  
Author(s):  
R. Clark Brown ◽  
Scott Pattison ◽  
Janine van Ree ◽  
Elise Coghill ◽  
Andrew Perkins ◽  
...  

ABSTRACT Characterization of the mechanism(s) of action of trans-acting factors in higher eukaryotes requires the establishment of cellular models that test their function at endogenous target gene regulatory elements. Erythroid Krüppel-like factor (EKLF) is essential for β-globin gene transcription. To elucidate the in vivo determinants leading to transcription of the adult β-globin gene, functional domains of EKLF were examined in the context of chromatin remodeling and transcriptional activation at the endogenous locus. Human EKLF (hEKLF) sequences, linked to an estrogen-responsive domain, were studied with an erythroblast cell line lacking endogenous EKLF expression (J2eΔeklf). J2eΔeklf cells transduced with hEKLF demonstrated a dose-dependent rescue of β-globin transcription in the presence of inducing ligand. Further analysis using a series of amino-terminal truncation mutants of hEKLF identified a distinct internal domain, which is sufficient for transactivation. Interestingly, studies of the chromatin structure of the β-promoter revealed that a smaller carboxy-terminal domain generated an open promoter configuration. In vitro and in vivo binding studies demonstrated that this region interacted with BRG1, a component of the SWI/SNF chromatin remodeling complex. However, further study revealed that BRG1 interacted with an even smaller domain of EKLF, suggesting that additional protein interactions are required for chromatin remodeling at the endogenous β-promoter. Taken together, our findings support a stepwise process of chromatin remodeling and coactivator recruitment to the β-globin promoter in vivo. The J2eΔeklf inducible hEKLF system will be a valuable tool for further characterizing the temporal series of events required for endogenous β-globin gene transcription.


2001 ◽  
Vol 20 (7) ◽  
pp. 365-372 ◽  
Author(s):  
D W Christensen ◽  
R Kisling ◽  
J Thompson ◽  
M A Kirby

Deferoxamine is commonly used for treatment of iron intoxication. Because the usual dose is unable to chelate sufficient iron before severe injury occurs, “high-dose” deferoxamine treatment has been proposed. However, several authors have reported severe toxicity after deferoxamine therapy. Although the hemodynamic effects are well described, the cellular toxicity of deferoxamine is unknown. Accordingly, we investigated the cellular toxicity of deferoxamine using in vitro techniques in two cell lines. Brain cells were harvested from fetal rats and cultured for 14-21 days beforedeferoxamineexposure.Usingsimilartechniques,rat hepatoma cells were grown until confluent. Deferoxamine was added to the cultures to achieve final concentrations of 200-800 μg/ml, corresponding to in vivo infusion rates of 15-60mg/kg/h.Deferoxaminewasremovedafter3or6days by changing the medium. Subtoxic FeCl3 (500 mg/dl) was concurrently added to identical cultures to determine if deferoxamine potentiated iron toxicity. Cell viability was measured by a colorimetric assay. The addition of deferoxamine (0.2, 0.4, 0.8 mg/ml) significantly decreased cell viability in both cell groups. The effect of deferoxamine on primary cortical brain cultures was similar for the three concentrations used, and was similar when examined either 72 h or 6 days later. In contrast, hepatoma cell cultures evidencedadose-dependentcelllossthatincreasedwiththe lengthofexposure.TheadditionofsubtoxicamountsofFeCl3(500 μg/dl) in the presence of deferoxamine was protective in all cultures, and abolished deferoxamine-induced cell loss. Interestingly, the addition of serum albumin significantlyreducedtheamountofironpresentincells,suggesting its potential use to treat iron toxicity. These results suggest that deferoxamine, in the absence of iron, is toxic to cortical brain and hepatoma cells in vitro.


Microbiology ◽  
2000 ◽  
Vol 81 (7) ◽  
pp. 1791-1799 ◽  
Author(s):  
Carine Segouffin-Cariou ◽  
Géraldine Farjot ◽  
Alain Sergeant ◽  
Henri Gruffat

The switch from latency to a productive cycle in Epstein–Barr virus (EBV)-infected B cells proliferating in vitro is thought to be due to the transcriptional activation of two viral genes, BZLF1 and BRLF1, encoding two transcription factors called EB1 and R respectively. However, a third gene, BRRF1 is contained in the BZLF1/BRLF1 locus, overlapping with BRLF1 but in inverse orientation. We have characterized the 5′ end of the BRRF1 mRNA and the promoter, PNa, at which BRRF1 pre-mRNA is initiated. We show that although a single BRRF1 mRNA species is induced by 12-O-tetradecanoylphorbol 13-acetate/sodium butyrate in several EBV-infected B cell lines, in Akata cells treated with anti-IgG two BRRF1 mRNAs can be detected. Transcription initiated at the BRRF1 promoter was activated by EB1 but not by R, and EB1-binding sites which contribute to the EB1-activated transcription have been mapped to between positions −469 and +1. A 34 kDa protein could be translated from the BRRF1 mRNA both in vitro and in vivo, and was found predominantly in the nucleus of HeLa cells transfected with a BRRF1 expression vector. Thus there are three promoters in the region of the EBV chromatin containing the BZLF1/BRLF1 genes, two of which, PZ and PNa, potentially share regulatory elements.


2005 ◽  
Vol 83 (4) ◽  
pp. 535-547 ◽  
Author(s):  
Gareth N Corry ◽  
D Alan Underhill

To date, the majority of the research regarding eukaryotic transcription factors has focused on characterizing their function primarily through in vitro methods. These studies have revealed that transcription factors are essentially modular structures, containing separate regions that participate in such activities as DNA binding, protein–protein interaction, and transcriptional activation or repression. To fully comprehend the behavior of a given transcription factor, however, these domains must be analyzed in the context of the entire protein, and in certain cases the context of a multiprotein complex. Furthermore, it must be appreciated that transcription factors function in the nucleus, where they must contend with a variety of factors, including the nuclear architecture, chromatin domains, chromosome territories, and cell-cycle-associated processes. Recent examinations of transcription factors in the nucleus have clarified the behavior of these proteins in vivo and have increased our understanding of how gene expression is regulated in eukaryotes. Here, we review the current knowledge regarding sequence-specific transcription factor compartmentalization within the nucleus and discuss its impact on the regulation of such processes as activation or repression of gene expression and interaction with coregulatory factors.Key words: transcription, subnuclear localization, chromatin, gene expression, nuclear architecture.


1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


Sign in / Sign up

Export Citation Format

Share Document