scholarly journals Transcriptional role of a conserved GATA-1 site in the human epsilon-globin gene promoter.

1991 ◽  
Vol 11 (5) ◽  
pp. 2558-2566 ◽  
Author(s):  
Q H Gong ◽  
J Stern ◽  
A Dean

The epsilon-globin gene is the first of the human beta-like globin genes to be expressed during development. We have analyzed protein-DNA interactions in the epsilon-globin promoter region by DNase I footprinting and electrophoretic mobility shift experiments using nuclear extracts from K562 human erythroid cells and from nonerythroid HeLa cells. A restricted set of ubiquitous proteins, including Sp1, bound to regions of the promoter including the CACCC and CCAAT sites. Three interactions, at positions -213, -165, and +3 relative to the transcription start site, were erythroid specific and corresponded to binding of GATA-1, a transcription factor highly restricted to the erythroid lineage. Interestingly, the GATA-1 site at -165 has been conserved in the promoters of 10 mammalian embryonic globin genes. Point mutations demonstrate that GATA-1 binding to this site is necessary for interaction with an erythroid-specific enhancer but that in the absence of an enhancer, GATA-1 does not increase transcription.

1991 ◽  
Vol 11 (5) ◽  
pp. 2558-2566
Author(s):  
Q H Gong ◽  
J Stern ◽  
A Dean

The epsilon-globin gene is the first of the human beta-like globin genes to be expressed during development. We have analyzed protein-DNA interactions in the epsilon-globin promoter region by DNase I footprinting and electrophoretic mobility shift experiments using nuclear extracts from K562 human erythroid cells and from nonerythroid HeLa cells. A restricted set of ubiquitous proteins, including Sp1, bound to regions of the promoter including the CACCC and CCAAT sites. Three interactions, at positions -213, -165, and +3 relative to the transcription start site, were erythroid specific and corresponded to binding of GATA-1, a transcription factor highly restricted to the erythroid lineage. Interestingly, the GATA-1 site at -165 has been conserved in the promoters of 10 mammalian embryonic globin genes. Point mutations demonstrate that GATA-1 binding to this site is necessary for interaction with an erythroid-specific enhancer but that in the absence of an enhancer, GATA-1 does not increase transcription.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1867-1867
Author(s):  
Paolo Moi ◽  
Giuseppina Maria Marini ◽  
Loredana Porcu ◽  
Isadora Asunis ◽  
Maria Giuseppina Loi ◽  
...  

Abstract EKLF and related Krueppel-like factors (KLFs) are variably implicated in the regulation of the β- and β-like globin genes. Prompted by the observation that four KLF sites are distributed in the human α-globin promoter, we investigated if any of the β-globin cluster regulating KLFs could also act to modulate the expression of the α-globin genes. We found that, among the globin regulating KLFs (EKLF, LKLF, BKLF, GKLF, KLF6, FKLF and FKLF2), only GKLF and BKLF bound specifically to three out of four KLF sites. In K562 cells, over-expressed GKLF transactivated at high levels a α-globin-luciferase reporter and its action was impaired by point mutations of the KLF sites that disrupted GKLFDNA binding. In K562 cells stably transfected with a Tet-off regulated GKLF expression cassette, GKLF induction stimulated the expression of the endogenous α-globin genes. In a complementary assay in K562 cells, knocking down GKLF expression with small interfering RNAs caused a parallel decrease in the transcription of the α-globin genes. All experiments combined support a main regulatory role of GKLF in the control of α-globin gene expression.


Blood ◽  
1998 ◽  
Vol 92 (8) ◽  
pp. 2924-2933 ◽  
Author(s):  
Tohru Ikuta ◽  
Yuet Wai Kan ◽  
Paul S. Swerdlow ◽  
Douglas V. Faller ◽  
Susan P. Perrine

Abstract The mechanisms by which pharmacologic agents stimulate γ-globin gene expression in β-globin disorders has not been fully established at the molecular level. In studies described here, nucleated erythroblasts were isolated from patients with β-globin disorders before and with butyrate therapy, and globin biosynthesis, mRNA, and protein-DNA interactions were examined. Expression of γ-globin mRNA increased twofold to sixfold above baseline with butyrate therapy in 7 of 8 patients studied. A 15% to 50% increase in γ-globin protein synthetic levels above baseline γ globin ratios and a relative decrease in β-globin biosynthesis were observed in responsive patients. Extensive new in vivo footprints were detected in erythroblasts of responsive patients in four regions of the γ-globin gene promoter, designated butyrate-response elements gamma 1-4 (BRE-G1-4). Electrophoretic mobility shift assays using BRE-G1 sequences as a probe demonstrated that new binding of two erythroid-specific proteins and one ubiquitous protein, CP2, occurred with treatment in the responsive patients and did not occur in the nonresponder. The BRE-G1 sequence conferred butyrate inducibility in reporter gene assays. These in vivo protein-DNA interactions in human erythroblasts in which γ-globin gene expression is being altered strongly suggest that nuclear protein binding, including CP2, to the BRE-G1 region of the γ-globin gene promoter mediates butyrate activity on γ-globin gene expression. © 1998 by The American Society of Hematology.


Blood ◽  
1988 ◽  
Vol 71 (3) ◽  
pp. 815-817 ◽  
Author(s):  
S Ottolenghi ◽  
S Nicolis ◽  
R Taramelli ◽  
N Malgaretti ◽  
R Mantovani ◽  
...  

Abstract A survey of hemoglobinopathies in Northern Sardinia allowed the identification of two subjects heterozygous for a new type of G gamma hereditary persistence of fetal hemoglobin (HPFH). The G gamma-globin gene from the HPFH chromosome shows the presence of a T----C substitution 175 nucleotides upstream of the CAP site, adding a new example of single-point mutations occurring in the promoter region of the gamma-globin genes and linked to HPFH phenotypes. In this case the mutation affects the 3′ end nucleotide of a conserved octamer sequence known to be present in other regulatory elements of several genes.


1999 ◽  
Vol 19 (11) ◽  
pp. 7600-7609 ◽  
Author(s):  
Jennifer C. McDowell ◽  
Ann Dean

ABSTRACT We investigated the requirements for enhancer-promoter communication by using the human β-globin locus control region (LCR) DNase I-hypersensitive site 2 (HS2) enhancer and the ɛ-globin gene in chromatinized minichromosomes in erythroid cells. Activation of globin genes during development is accompanied by localized alterations of chromatin structure, and CACCC binding factors and GATA-1, which interact with both globin promoters and the LCR, are believed to be critical for globin gene transcription activation. We found that an HS2 element mutated in its GATA motif failed to remodel the ɛ-globin promoter or activate transcription yet HS2 nuclease accessibility did not change. Accessibility and transcription were reduced at promoters with mutated GATA-1 or CACCC sites. Strikingly, these mutations also resulted in reduced accessibility at HS2. In the absence of a globin gene, HS2 is similarly resistant to nuclease digestion. In contrast to observations in Saccharomyces cerevisiae, HS2-dependent promoter remodeling was diminished when we mutated the TATA box, crippling transcription. This mutation also reduced HS2 accessibility. The results indicate that the ɛ-globin promoter and HS2 interact both structurally and functionally and that both upstream activators and the basal transcription apparatus contribute to the interaction. Further, at least in this instance, transcription activation and promoter remodeling by a distant enhancer are not separable.


1998 ◽  
Vol 18 (11) ◽  
pp. 6634-6640 ◽  
Author(s):  
Denise E. Sabatino ◽  
Amanda P. Cline ◽  
Patrick G. Gallagher ◽  
Lisa J. Garrett ◽  
George Stamatoyannopoulos ◽  
...  

ABSTRACT During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2066-2066 ◽  
Author(s):  
Fernanda Marconi Roversi ◽  
Anderson Ferreira Cunha ◽  
Carolina Lanaro ◽  
Ana Flavia Brugnerotto ◽  
Maria Emília Favero ◽  
...  

Abstract Abstract 2066 Hereditary persistence of fetal hemoglobin (HPFH) is a condition that prevents hemoglobin switching and the consequent silencing of the gamma globin genes, resulting in continued hemoglobin (Hb) F synthesis in adults. Two types of HPFH are responsible for this phenotype: deletional HPFH – deletions in the end of the beta globin locus – and non-deletional HPFH (ndHPFH) – single point mutations in the proximal promoter of both gamma globin genes. Sickle cell anemia patients or beta-thalassemia patients that present HPFH show high levels of HbF that are associated with less severe clinical course in these diseases. The development of new therapies based on the reactivation of gamma globin expression may be important for the treatment of these patients. The Brazilian ndHPFH type is characterized as a C→G substitution in the A gamma globin promoter at position –195 and the molecular mechanism responsible for the reactivation of this gene in the Brazilian ndHPFH type remains unclear. In contrast to the British ndHPFH type (-198), where the mechanism responsible for the increase of HbF levels is mediated by the raising in the affinity for the Sp1 transcription factor (TF), the Brazilian ndHPFH mutation does not affect Sp1 binding. Thus, other TF may be involved in the reactivation of the A gamma globin gene in the Brazilian ndHPFH type. The aim of this study was to investigate the mechanism involved in the reactivation or repression of the A gamma globin gene in the Brazilian ndHPFH type and identify possible TF responsible for this phenotype. In vitro primary human erythroblast cultures, derived from human CD34+ hematopoietic cells from 4 Brazilian ndHPFH type subjects and 4 control subjects, were proliferated and differentiated into late stage erythroblasts. The nuclear extracts from predominantly basophilic and polychromatic erythroblasts were used to profile TF activity using Protein-DNA Array method. The analysis of the array densitometry identified a number of TF whose DNA binding activities were either enhanced or repressed in the Brazilian ndHPFH cultures. Among the TF analyzed, the NF-E1/YY1 and the PAX-1 were selected for this study. Since this assay requires a secondary method to confirm these results, nuclear extracts were used to conduct chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). ChIP was carried out using antibodies against NF-E1/YY1 and PAX-1 to quantify the binding to these TF to the –195 A gamma globin promoter region. EMSA was performed using probes with the same sequence spotted on the array membrane to analyze the activity of NF-E1/YY1 and PAX-1. Both methods confirmed and validated the previous array results. NF-E1/YY1 is a transcription factor that represses embryonic (epsilon) and fetal (gamma) globin genes. Protein-DNA array and EMSA showed a decreased binding of NF-E1/YY1 in Brazilian ndHPFH nuclear extracts and ChIP analysis revealed diminished NF-E1/YY1 occupancy at the –195 A gamma globin promoter region of Brazilian ndHPFH. The consensus binding site for NF-E1/YY1 is a CCAN motif that is observed between the –195 and –192 position in the A gamma globin promoter region. The C→G substitution at –195 position may disrupt this DNA binding site, cause decreased NF-E1/YY1 interaction and probably allows the binding of PAX-1, a transcriptional activator with a paired box DNA-binding domain that has as a DNA binding core motif, the sequence TTCCGC. This sequence, located between the –199 and –194 position in the A gamma globin promoter, is only presente in the Brazilian type of ndHPFH. Our protein-DNA array and EMSA results showed an increased binding of PAX-1 in the Brazilian ndHPFH nuclear extracts and quantitative ChIP analysis with anti-PAX-1 antibody showed that PAX-1 binds to the –195 A gamma globin promoter region only in the presence of this C→G substitution. These results suggest that the –195 site (C→G) in the A gamma globin promoter region may decrease NF-E1/YY1 binding and increase PAX-1 binding in this DNA region, probably resulting in the reactivation of the A gamma globin gene. The increase in the HbF levels in the Brazilian ndHPFH occurs differently from the British ndHPFH type and represents a novel mechanism of A gamma globin reactivation. Such findings may lead to the development of future therapeutic strategies for HbF induction in the treatment of other hemoglobinopathies. Support by FAPESP and CNPq. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 26 (11) ◽  
pp. 4368-4377 ◽  
Author(s):  
Andre M. Pilon ◽  
Douglas G. Nilson ◽  
Dewang Zhou ◽  
Jose Sangerman ◽  
Tim M. Townes ◽  
...  

ABSTRACT Erythroid Krüppel-like factor (EKLF) is an erythroid zinc finger protein identified by its interaction with a CACCC sequence in the β-globin promoter, where it establishes local chromatin structure permitting β-globin gene transcription. We sought to identify other EKLF target genes and determine the chromatin status of these genes in the presence and absence of EKLF. We identified alpha hemoglobin-stabilizing protein (AHSP) by subtractive hybridization and demonstrated a 95 to 99.9% reduction in AHSP mRNA and the absence of AHSP in EKLF-deficient cells. Chromatin at the AHSP promoter from EKLF-deficient cells lacked a DNase I hypersensitive site and exhibited histone hypoacetylation across the locus compared to hyperacetylation of wild-type chromatin. Wild-type chromatin demonstrated a peak of EKLF binding over a promoter region CACCC box that differs from the EKLF consensus by a nucleotide. In mobility shift assays, the AHSP promoter CACCC site bound EKLF in a manner comparable to the β-globin promoter CACCC site, indicating a broader recognition sequence for the EKLF consensus binding site. The AHSP promoter was transactivated by EKLF in K562 cells, which lack EKLF. These results support the hypothesis that EKLF acts as a transcription factor and a chromatin modulator for the AHSP and β-globin genes and indicate that EKLF may play similar roles for other erythroid genes.


Blood ◽  
2002 ◽  
Vol 100 (12) ◽  
pp. 4217-4222 ◽  
Author(s):  
Rakesh Singal ◽  
Jane M. vanWert ◽  
Larry Ferdinand

The inverse relationship between expression and methylation of β-type globin genes is well established. However, little is known about the relationship between expression and methylation of avian α-type globin genes. The embryonicαπ-globin promoter was unmethylated, andαπ-globin RNA was easily detected in 5-day chicken erythroid cells. A progressive methylation of the CpG dinucleotides in the απ promoter associated with loss of expression of απ-globin gene was seen during development in primary erythroid cells. A 315-bpαπ-globin promoter region was cloned in an expression construct (απpGL3E) containing a luciferase reporter gene and SV40 enhancer. The απpGL3E construct was transfected into primary erythroid cells derived from 5-day-old chicken embryos. Methylation of απpGL3E plasmid andαπ-globin promoter alone resulted in a 20-fold and 7-fold inhibition of expression, respectively. The fully methylated but not the unmethylated 315-bpαπ-globin gene promoter fragment formed amethyl cytosine-binding proteincomplex (MeCPC). Chromatin immunoprecipitation assays were combined with quantitative real-time polymerase chain reaction to assess histone acetylation associated with theαπ-globin gene promoter. Slight hyperacetylation of histone H3 but a marked hyperacetylation of histone H4 was seen in 5-day when compared with 14-day erythroid cells. These results demonstrate that methylation can silence transcription of an avian α-type embryonic globin gene in homologous primary erythroid cells, possibly by interacting with an MeCPC and histone deacetylase complex.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1864-1864
Author(s):  
Xingguo Li ◽  
Xin Hu ◽  
Zhuo Zhou ◽  
Yi Qiu ◽  
Gary Felsenfeld ◽  
...  

Abstract Communication between distal enhancers and proximal promoters is critical in controlling proper transcription of genes. However, the functional link between certain histone modifications and the formation of long-range chromatin interactions involved in transcriptional activation remains unknown. In the globin locus, the b-globin genes are regulated by highly organized chromatin structure that juxtaposes the locus control region (LCR) located far upstream of the genes with the proximal b-major globin promoter (bmajpromoter). We report here that the localized asymmetric dimethylation of Arg3 at histone H4 tails (dimethyl H4R3) catalyzed by the methyltransferase PRMT1 is essential for establishing the long-range chromatin interactions between the LCR and the bmaj-promoter and strongly correlates with the activation of adult b-globin gene transcription. In addition, dimethyl H4R3 potentiates the recruitment of histone acetyltransferases (HATs), CBP and PCAF, and is required for the establishment of subsequent histone acetylation at the globin locus. Suppression of PRMT1 activity disrupts the recruitment of transcription complexes, TBP and RNA polymerase II (RNA Pol II), at the active b-globin promoter, but not at the LCR. Taken together, our data implicate PRMT1-mediated dimethylation of H4R3 in the regulation of long-range enhancer/promoter communications, which are required for the efficient recruitment of transcription complexes to the active gene promoter.


Sign in / Sign up

Export Citation Format

Share Document