scholarly journals A mutation in the yeast heat-shock factor gene causes temperature-sensitive defects in both mitochondrial protein import and the cell cycle.

1991 ◽  
Vol 11 (5) ◽  
pp. 2647-2655 ◽  
Author(s):  
B J Smith ◽  
M P Yaffe

Yeast cells containing the recessive mas3 mutation display temperature-sensitive defects in both mitochondrial protein import and the cell division cycle. The import defect is characterized by two pools of mitochondrial precursors and a dramatically slower rate of posttranslational import. The effect of mas3 on cell cycle progression occurs within one cell cycle at the nonpermissive temperature and retards progression through the G2 stage. The mas3 mutation maps to the gene encoding yeast heat-shock transcription factor (HSF), and expression of wild-type HSF complements the temperature-sensitive defects. The mas3 lesion has no apparent effect on protein secretion. In mas3 cells, induction of a major heat-shock gene, SSA1, is defective at 37 degrees C. The properties of the mas3 mutant cells indicate that HSF mediates the response to stress of two basic cellular processes: mitochondrial protein import and cell cycle progression.

1991 ◽  
Vol 11 (5) ◽  
pp. 2647-2655 ◽  
Author(s):  
B J Smith ◽  
M P Yaffe

Yeast cells containing the recessive mas3 mutation display temperature-sensitive defects in both mitochondrial protein import and the cell division cycle. The import defect is characterized by two pools of mitochondrial precursors and a dramatically slower rate of posttranslational import. The effect of mas3 on cell cycle progression occurs within one cell cycle at the nonpermissive temperature and retards progression through the G2 stage. The mas3 mutation maps to the gene encoding yeast heat-shock transcription factor (HSF), and expression of wild-type HSF complements the temperature-sensitive defects. The mas3 lesion has no apparent effect on protein secretion. In mas3 cells, induction of a major heat-shock gene, SSA1, is defective at 37 degrees C. The properties of the mas3 mutant cells indicate that HSF mediates the response to stress of two basic cellular processes: mitochondrial protein import and cell cycle progression.


1992 ◽  
Vol 12 (1) ◽  
pp. 283-291 ◽  
Author(s):  
D P Atencio ◽  
M P Yaffe

The nuclear mas5 mutation causes temperature-sensitive growth and defects in mitochondrial protein import at the nonpermissive temperature in the yeast Saccharomyces cerevisiae. The MAS5 gene was isolated by complementation of the mutant phenotypes, and integrative transformation demonstrated that the complementing fragment encoded the authentic MAS5 gene. The deduced protein sequence of the cloned gene revealed a polypeptide of 410 amino acids which is homologous to Escherichia coli DnaJ and the yeast DnaJ log SCJ1. Northern (RNA blot) analysis revealed that MAS5 is a heat shock gene whose expression increases moderately at elevated temperatures. Cells with a deletion mutation in MAS5 grew slowly at 23 degrees C and were inviable at 37 degrees C, demonstrating that MAS5 is essential for growth at increased temperatures. The deletion mutant also displayed a modest import defect at 23 degrees C and a substantial import defect at 37 degrees C. These results indicate a role for a DnaJ cognate protein in mitochondrial protein import.


1992 ◽  
Vol 12 (1) ◽  
pp. 283-291
Author(s):  
D P Atencio ◽  
M P Yaffe

The nuclear mas5 mutation causes temperature-sensitive growth and defects in mitochondrial protein import at the nonpermissive temperature in the yeast Saccharomyces cerevisiae. The MAS5 gene was isolated by complementation of the mutant phenotypes, and integrative transformation demonstrated that the complementing fragment encoded the authentic MAS5 gene. The deduced protein sequence of the cloned gene revealed a polypeptide of 410 amino acids which is homologous to Escherichia coli DnaJ and the yeast DnaJ log SCJ1. Northern (RNA blot) analysis revealed that MAS5 is a heat shock gene whose expression increases moderately at elevated temperatures. Cells with a deletion mutation in MAS5 grew slowly at 23 degrees C and were inviable at 37 degrees C, demonstrating that MAS5 is essential for growth at increased temperatures. The deletion mutant also displayed a modest import defect at 23 degrees C and a substantial import defect at 37 degrees C. These results indicate a role for a DnaJ cognate protein in mitochondrial protein import.


2006 ◽  
Vol 174 (5) ◽  
pp. 631-637 ◽  
Author(s):  
Yasushi Tamura ◽  
Yoshihiro Harada ◽  
Koji Yamano ◽  
Kazuaki Watanabe ◽  
Daigo Ishikawa ◽  
...  

Newly synthesized mitochondrial proteins are imported into mitochondria with the aid of protein translocator complexes in the outer and inner mitochondrial membranes. We report the identification of yeast Tam41, a new member of mitochondrial protein translocator systems. Tam41 is a peripheral inner mitochondrial membrane protein facing the matrix. Disruption of the TAM41 gene led to temperature-sensitive growth of yeast cells and resulted in defects in protein import via the TIM23 translocator complex at elevated temperature both in vivo and in vitro. Although Tam41 is not a constituent of the TIM23 complex, depletion of Tam41 led to a decreased molecular size of the TIM23 complex and partial aggregation of Pam18 and -16. Import of Pam16 into mitochondria without Tam41 was retarded, and the imported Pam16 formed aggregates in vitro. These results suggest that Tam41 facilitates mitochondrial protein import by maintaining the functional integrity of the TIM23 protein translocator complex from the matrix side of the inner membrane.


1997 ◽  
Vol 110 (19) ◽  
pp. 2345-2357 ◽  
Author(s):  
A. Battistoni ◽  
G. Guarguaglini ◽  
F. Degrassi ◽  
C. Pittoggi ◽  
A. Palena ◽  
...  

RanBP1 is a molecular partner of the Ran GTPase, which is implicated in the control of several processes, including DNA replication, mitotic entry and exit, cell cycle progression, nuclear structure, protein import and RNA export. While most genes encoding Ran-interacting partners are constitutively active, transcription of the RanBP1 mRNA is repressed in non proliferating cells, is activated at the G1/S transition in cycling cells and peaks during S phase. We report here that forced expression of the RanBP1 gene disrupts the orderly execution of the cell division cycle at several stages, causing inhibition of DNA replication, defective mitotic exit and failure of chromatin decondensation during the telophase-to-interphase transition in cells that achieve nuclear duplication and chromosome segregation. These results suggest that deregulated RanBP1 activity interferes with the Ran GTPase cycle and prevents the functioning of the Ran signalling system during the cell cycle.


2010 ◽  
Vol 9 (10) ◽  
pp. 1418-1431 ◽  
Author(s):  
Emma L. Turner ◽  
Mackenzie E. Malo ◽  
Marnie G. Pisclevich ◽  
Megan D. Dash ◽  
Gerald F. Davies ◽  
...  

ABSTRACT The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G1. Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56Ac) levels were as reduced as those of total H3, indicating that loading histones with H3K56Ac is unaffected in APC mutants. However, under restrictive conditions, H3K9Ac and dimethylated H3K79 (H3K79me2) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5 CA (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5 CA temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5 CA cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5 CA defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G1 and following G1 arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G1. To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.


2018 ◽  
Vol 293 (41) ◽  
pp. 15815-15826 ◽  
Author(s):  
Ah-Mee Park ◽  
Ikuo Tsunoda ◽  
Osamu Yoshie

Heat shock protein 27 (HSP27) protects cells under stress. Here, we demonstrate that HSP27 also promotes cell cycle progression of MRC-5 human lung fibroblast cells. Serum starvation for 24 h induced G1 arrest in these cells, and upon serum refeeding, the cells initiated cell cycle progression accompanied by an increase in HSP27 protein levels. HSP27 levels peaked at 12 h, and transcriptional up-regulation of six G2/M-related genes (CCNA2, CCNB1, CCNB2, CDC25C, CDCA3, and CDK1) peaked at 24–48 h. siRNA-mediated HSP27 silencing in proliferating MRC-5 cells induced G2 arrest coinciding with down-regulation of these six genes. Of note, the promoters of all of these genes have the cell cycle–dependent element and/or the cell cycle gene-homology region. These promoter regions are known to be bound by the E2F family proteins (E2F-1 to E2F-8) and retinoblastoma (RB) family proteins (RB1, p107, and p130), among which E2F-4 and p130 were strongly up-regulated in HSP27-knockdown cells. E2F-4 or p130 knockdown concomitant with the HSP27 knockdown rescued MRC-5 cells from G2 arrest and up-regulated the six cell cycle genes. Moreover, we observed cellular senescence in MRC-5 cells on day 3 after the HSP27 knockdown, as evidenced by increased senescence-associated β-gal activity and up-regulated inflammatory cytokines. The cellular senescence was also suppressed by the concomitant knockdown of E2F-4/HSP27 or p130/HSP27. Our findings indicate that HSP27 promotes cell cycle progression of MRC-5 cells by suppressing expression of the transcriptional repressors E2F-4 and p130.


1993 ◽  
Vol 122 (5) ◽  
pp. 1003-1012 ◽  
Author(s):  
JL Emtage ◽  
RE Jensen

To identify new components that mediate mitochondrial protein import, we analyzed mas6, an import mutant in the yeast Saccharomyces cerevisiae. mas6 mutants are temperature sensitive for viability, and accumulate mitochondrial precursor proteins at the restrictive temperature. We show that mas6 does not correspond to any of the presently identified import mutants, and we find that mitochondria isolated from mas6 mutants are defective at an early stage of the mitochondrial protein import pathway. MAS6 encodes a 23-kD protein that contains several potential membrane spanning domains, and yeast strains disrupted for MAS6 are inviable at all temperatures and on all carbon sources. The Mas6 protein is located in the mitochondrial inner membrane and cannot be extracted from the membrane by alkali treatment. Antibodies to the Mas6 protein inhibit import into isolated mitochondria, but only when the outer membrane has been disrupted by osmotic shock. Mas6p therefore represents an essential import component located in the mitochondrial inner membrane.


2013 ◽  
Vol 24 (12) ◽  
pp. 1872-1881 ◽  
Author(s):  
Lin Deng ◽  
James B. Moseley

Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.


Sign in / Sign up

Export Citation Format

Share Document