Functionally distinct isoforms of the CRE-BP DNA-binding protein mediate activity of a T-cell-specific enhancer

1992 ◽  
Vol 12 (2) ◽  
pp. 747-757
Author(s):  
K Georgopoulos ◽  
B A Morgan ◽  
D D Moore

Expression of the CD3 delta gene of the T-cell receptor (TCR) complex is regulated by a T-cell-specific enhancer. A highly conserved 40-bp motif (element delta A) within the CD3 delta enhancer is responsible for mediating its activity and specificity. Element delta A exhibits sequence similarities to the cyclic AMP response element (CRE) but does not respond to changes in the level of cyclic AMP. Using the delta A element as a probe, we have isolated three cDNA clones encoding three distinct protein isoforms, products of differential splicing and alternate promoter usage of the CRE-BP gene. These isoforms share the DNA binding and dimerization domains at the C terminus of the protein but differ at their N termini. In transfection assays, their activities as transcription regulators differ: CRE-BP2 is a potent activator, CRE-BP3 is a weak activator, and CRE-BP1 is transcriptionally inert. Mutations in the basic region of the CRE-BP1 protein which abrogate its ability to bind DNA render this protein a dominant repressor of the delta A enhancer. Antibodies to the CRE-BP protein interact specifically with the ubiquitous and predominantly T-cell-restricted nuclear complexes that bind to the delta A element and suggest the presence of this protein in homo- and heterodimeric complexes. Since the delta A motif is also present in the enhancer and promoter of the TCR alpha and beta genes, the CRE-BP isoforms may mediate expression of other members of the CD3/TCR complex during T-cell development.

1992 ◽  
Vol 12 (2) ◽  
pp. 747-757 ◽  
Author(s):  
K Georgopoulos ◽  
B A Morgan ◽  
D D Moore

Expression of the CD3 delta gene of the T-cell receptor (TCR) complex is regulated by a T-cell-specific enhancer. A highly conserved 40-bp motif (element delta A) within the CD3 delta enhancer is responsible for mediating its activity and specificity. Element delta A exhibits sequence similarities to the cyclic AMP response element (CRE) but does not respond to changes in the level of cyclic AMP. Using the delta A element as a probe, we have isolated three cDNA clones encoding three distinct protein isoforms, products of differential splicing and alternate promoter usage of the CRE-BP gene. These isoforms share the DNA binding and dimerization domains at the C terminus of the protein but differ at their N termini. In transfection assays, their activities as transcription regulators differ: CRE-BP2 is a potent activator, CRE-BP3 is a weak activator, and CRE-BP1 is transcriptionally inert. Mutations in the basic region of the CRE-BP1 protein which abrogate its ability to bind DNA render this protein a dominant repressor of the delta A enhancer. Antibodies to the CRE-BP protein interact specifically with the ubiquitous and predominantly T-cell-restricted nuclear complexes that bind to the delta A element and suggest the presence of this protein in homo- and heterodimeric complexes. Since the delta A motif is also present in the enhancer and promoter of the TCR alpha and beta genes, the CRE-BP isoforms may mediate expression of other members of the CD3/TCR complex during T-cell development.


1996 ◽  
Vol 16 (3) ◽  
pp. 745-752 ◽  
Author(s):  
M Van de Wetering ◽  
J Castrop ◽  
V Korinek ◽  
H Clevers

Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer.


1990 ◽  
Vol 10 (4) ◽  
pp. 1347-1357
Author(s):  
C J Kara ◽  
H C Liou ◽  
L B Ivashkiv ◽  
L H Glimcher

The cyclic AMP response element (CRE) is found in many cellular genes regulated by cyclic AMP, and similar elements are present in the early genes of adenovirus that are activated by E1A. The transcription factor CREB has previously been shown to bind this site, and cDNAs for CREB have recently been characterized. We report here the isolation of a cDNA encoding a human DNA-binding protein that also recognizes this motif in cellular and viral promoters. This protein, HB16, displays structural similarity to CREB and to c-Jun and c-Fos, which bind the related 12-O-tetradecanoylphorbol-13-acetate response element (TRE). HB16 contains a highly basic, putative DNA-binding domain and a leucine zipper structure thought to be involved in dimerization. Deletional analysis of HB16 demonstrated that the leucine zipper is required for its interaction with DNA. In addition, HB16 could form a complex with c-Jun but not with c-Fos. Despite its structural similarity to c-Jun and c-Fos and its interaction with c-Jun, HB16 had approximately a 10-fold-lower affinity for the TRE sequence than for the CRE sequence. Although HB16 and CREB both recognized the CRE motif, an extensive binding analysis of HB16 revealed differences in the fine specificity of binding of the two proteins. HB16 mRNA was found at various levels in many human tissues but was most abundant in brain, where its expression was widespread. The existence of more than one CRE-binding protein suggests that the CRE motif could serve multiple regulatory functions.


1989 ◽  
Vol 9 (11) ◽  
pp. 4835-4845
Author(s):  
S J Anderson ◽  
S Miyake ◽  
D Y Loh

We identified a regulatory region of the murine V beta promoter by both in vivo and in vitro analyses. The results of transient transfection assays indicated that the dominant transcription-activating element within the V beta 8.3 promoter is the palindromic motif identified previously as the conserved V beta decamer. Elimination of this element, by linear deletion or specific mutation, reduced transcriptional activity from this promoter by 10-fold. DNase I footprinting, gel mobility shift, and methylation interference assays confirmed that the palindrome acts as the binding site of a specific nuclear factor. In particular, the V beta promoter motif functioned in vitro as a high-affinity site for a previously characterized transcription activator, ATF. A consensus cyclic AMP response element (CRE) but not a consensus AP-1 site, can substitute for the decamer in vivo. These data suggest that cyclic AMP response element-binding protein (ATF/CREB) or related proteins activate V beta transcription.


1990 ◽  
Vol 10 (4) ◽  
pp. 1347-1357 ◽  
Author(s):  
C J Kara ◽  
H C Liou ◽  
L B Ivashkiv ◽  
L H Glimcher

The cyclic AMP response element (CRE) is found in many cellular genes regulated by cyclic AMP, and similar elements are present in the early genes of adenovirus that are activated by E1A. The transcription factor CREB has previously been shown to bind this site, and cDNAs for CREB have recently been characterized. We report here the isolation of a cDNA encoding a human DNA-binding protein that also recognizes this motif in cellular and viral promoters. This protein, HB16, displays structural similarity to CREB and to c-Jun and c-Fos, which bind the related 12-O-tetradecanoylphorbol-13-acetate response element (TRE). HB16 contains a highly basic, putative DNA-binding domain and a leucine zipper structure thought to be involved in dimerization. Deletional analysis of HB16 demonstrated that the leucine zipper is required for its interaction with DNA. In addition, HB16 could form a complex with c-Jun but not with c-Fos. Despite its structural similarity to c-Jun and c-Fos and its interaction with c-Jun, HB16 had approximately a 10-fold-lower affinity for the TRE sequence than for the CRE sequence. Although HB16 and CREB both recognized the CRE motif, an extensive binding analysis of HB16 revealed differences in the fine specificity of binding of the two proteins. HB16 mRNA was found at various levels in many human tissues but was most abundant in brain, where its expression was widespread. The existence of more than one CRE-binding protein suggests that the CRE motif could serve multiple regulatory functions.


2009 ◽  
Vol 284 (51) ◽  
pp. 35450-35460 ◽  
Author(s):  
Christine Börner ◽  
Michal Smida ◽  
Volker Höllt ◽  
Burkhart Schraven ◽  
Jürgen Kraus

1989 ◽  
Vol 169 (6) ◽  
pp. 2059-2071 ◽  
Author(s):  
Y Weinstein ◽  
K Morishita ◽  
J L Cleveland ◽  
J N Ihle

The expression of the murine TCR-gamma genes was examined in a series of IL-3-dependent and growth factor-independent cell lines. All of the IL-3-dependent cell lines, but none of the IL-3-independent lines, expressed high levels of one or more of the gamma genes but did not express the TCR-beta genes. None of the cell lines expressing the gamma loci contained detectable genomic gamma gene rearrangements. Sequencing of cDNA clones from two of the cell lines demonstrated that transcription was from nonrearranged gamma loci based on the presence of sequences in the cDNAs that are found immediately 5' of the J gamma 4 and J gamma 2 genes. The expression of gamma transcripts was dependent upon IL-3 and no transcripts were detectable within 6-8 h after the removal of IL-3. Readdition of IL-3, but not granulocyte CSF, resulted in the reappearance of gamma transcripts within 30 min. The results demonstrate that IL-3 regulates the expression of nonrearranged gamma loci. Since expression is required for rearrangement, it can be hypothesized that IL-3 may influence the ability of lymphoid/myeloid progenitors to commit to the T cell lineage.


2001 ◽  
Vol 21 (9) ◽  
pp. 3126-3136 ◽  
Author(s):  
Osamu Kaminuma ◽  
Marcel Deckert ◽  
Chris Elly ◽  
Yun-Cai Liu ◽  
Amnon Altman

ABSTRACT Vav, a hematopoiesis-specific signaling protein, plays an important role in T-cell development and activation. Vav upregulates the expression of the interleukin-2 (IL-2) gene, primarily via activation of the distal NFAT site in the IL-2 gene promoter (NFAT–IL-2). However, since this site cooperatively binds NFAT and AP-1, the relative contribution of Vav to NFAT versus AP-1 activation has not been determined. Here, we studied the respective roles of the AP-1 and NFAT pathways in the T-cell receptor (TCR)-mediated, Vav-dependent activation of NFAT–IL-2. Although Vav stimulated the transcriptional activity of an NFAT–IL-2 reporter gene, it failed to stimulate the transcriptional or DNA-binding activities of an AP-1-independent NFAT site derived from the human gamma interferon gene promoter. Vav also did not stimulate detectable Ca2+ mobilization and nuclear translocation of NFATc or NFATp. On the other hand, Vav induced the activation of Rac1 or Cdc42 and c-Jun N-terminal kinase (JNK), enhanced the transcriptional and DNA-binding activities of AP-1, and induced increased phosphorylation of c-Jun. Dominant-negative Vav and/or Rac1 mutants blocked the TCR-mediated stimulation of these events, demonstrating the physiological relevance of these effects. Vav also associated with Rac1 or Cdc42 in T cells, and anti-CD3 antibody stimulation enhanced this association. These findings indicate that a Rac1-dependent JNK/c-Jun/AP-1 pathway, rather than the Ca2+/NFAT pathway, plays the predominant role in NFAT–IL-2 activation by Vav.


Sign in / Sign up

Export Citation Format

Share Document