scholarly journals Signaling activity of transforming growth factor beta type II receptors lacking specific domains in the cytoplasmic region.

1993 ◽  
Vol 13 (12) ◽  
pp. 7239-7247 ◽  
Author(s):  
R Wieser ◽  
L Attisano ◽  
J L Wrana ◽  
J Massagué

The transforming growth factor beta (TGF-beta) type II receptor (T beta R-II) is a transmembrane serine/threonine kinase that contains two inserts in the kinase region and a serine/threonine-rich C-terminal extension. T beta R-II is required for TGF-beta binding to the type I receptor, with which it forms a heteromeric receptor complex, and its kinase activity is required for signaling by this complex. We investigated the role of various cytoplasmic regions in T beta R-II by altering or deleting these regions and determining the signaling activity of the resulting products in cell lines made resistant to TGF-beta by inactivation of the endogenous T beta R-II. TGF-beta binding to receptor I and responsiveness to TGF-beta in these cells can be restored by transfection of wild-type T beta R-II. Using this system, we show that the kinase insert 1 and the C-terminal tail of T beta R-II, in contrast to the corresponding regions in most tyrosine kinase receptors, are not essential to specify ligand-induced responses. Insert 2 is necessary to support the catalytic activity of the receptor kinase, and its deletion yields a receptor that is unable to mediate any of the responses tested. However, substitution of this insert with insert 2 from the activin receptor, ActR-IIB, does not diminish the ability of T beta R-II to elicit these responses. A truncated T beta R-II lacking the cytoplasmic domain still binds TGF-beta, supports ligand binding to receptor I, and forms a complex with this receptor. However, TGF-beta binding to receptor I facilitated by this truncated T beta R-II fails to inhibit cell proliferation, activate extracellular matrix protein production, or activate transcription from a promoter containing TGF-beta-responsive elements. We conclude that the transcriptional and antiproliferative responses to TGF-beta require both components of a heteromeric receptor complex that differs from tyrosine kinase receptors in its mode of signaling.

1993 ◽  
Vol 13 (12) ◽  
pp. 7239-7247
Author(s):  
R Wieser ◽  
L Attisano ◽  
J L Wrana ◽  
J Massagué

The transforming growth factor beta (TGF-beta) type II receptor (T beta R-II) is a transmembrane serine/threonine kinase that contains two inserts in the kinase region and a serine/threonine-rich C-terminal extension. T beta R-II is required for TGF-beta binding to the type I receptor, with which it forms a heteromeric receptor complex, and its kinase activity is required for signaling by this complex. We investigated the role of various cytoplasmic regions in T beta R-II by altering or deleting these regions and determining the signaling activity of the resulting products in cell lines made resistant to TGF-beta by inactivation of the endogenous T beta R-II. TGF-beta binding to receptor I and responsiveness to TGF-beta in these cells can be restored by transfection of wild-type T beta R-II. Using this system, we show that the kinase insert 1 and the C-terminal tail of T beta R-II, in contrast to the corresponding regions in most tyrosine kinase receptors, are not essential to specify ligand-induced responses. Insert 2 is necessary to support the catalytic activity of the receptor kinase, and its deletion yields a receptor that is unable to mediate any of the responses tested. However, substitution of this insert with insert 2 from the activin receptor, ActR-IIB, does not diminish the ability of T beta R-II to elicit these responses. A truncated T beta R-II lacking the cytoplasmic domain still binds TGF-beta, supports ligand binding to receptor I, and forms a complex with this receptor. However, TGF-beta binding to receptor I facilitated by this truncated T beta R-II fails to inhibit cell proliferation, activate extracellular matrix protein production, or activate transcription from a promoter containing TGF-beta-responsive elements. We conclude that the transcriptional and antiproliferative responses to TGF-beta require both components of a heteromeric receptor complex that differs from tyrosine kinase receptors in its mode of signaling.


1994 ◽  
Vol 126 (1) ◽  
pp. 139-154 ◽  
Author(s):  
Y I Henis ◽  
A Moustakas ◽  
H Y Lin ◽  
H F Lodish

Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co-expressing epitope-tagged types II and III receptors, a low level of co-precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co-patching of the receptor carrying the other tag, labeled by noncross-linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species.


1995 ◽  
Vol 269 (3) ◽  
pp. L419-L426 ◽  
Author(s):  
Y. Zhao ◽  
S. L. Young

Transforming growth factor-beta (TGF-beta) is an autocrine/paracrine growth factor that regulates cell proliferation, differentiation, extracellular matrix production and various other cell functions in the lung. TGF-beta exerts its effects on cells by binding to transmembrane heteromeric serine-threonine kinase receptors. The expression and localization of specific TGF-beta receptors in the lung, however, have not yet been investigated. In the present studies, we isolated a 1,762-base pair cDNA containing the full-length coding sequence for TGF-beta type II receptor (T beta RII) from rat fetal lung with the use of polymerase chain reaction methods. The expression of T beta RII during lung development was examined by Northern analysis. A 5.1-kilobase T beta RII mRNA was detected in rat lung tissue. T beta RII mRNA was expressed in rat fetal lung tissue early in development, increased as development proceeded, reached maximal concentration postnatally, and then decreased to the adult level. The localization of T beta RII in fetal and postnatal rat lung tissue was investigated with the use of in situ hybridization performed with an antisense RNA probe. T beta RII gene was expressed in the mesenchymal tissue and in the epithelial lining of the developing airway at day 16 of gestation. The hybridization signal of T beta RII mRNA was also observed in the adventitial layer of small blood vessels. Expression of T beta RII gene in the developing airway epithelium occurred along a proximal-distal gradient. In postnatal lung, T beta RII mRNA was detected mainly in parenchymal tissues and blood vessels. Expression of T beta RII remained high in the interstitium of interalveolar septa.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 15 (3) ◽  
pp. 1573-1581 ◽  
Author(s):  
J Cárcamo ◽  
A Zentella ◽  
J Massagué

T beta R-II (transforming growth factor beta [TGF-beta] type II receptor) is a transmembrane serine/threonine kinase that acts as the primary TGF-beta receptor. Ligand binding to T beta R-II leads to the recruitment and phosphorylation of T beta R-I, a distantly related transmembrane kinase that acts as a downstream signaling component. T beta R-I phosphorylation by T beta R-II is shown here to be essential for signaling. A mutant T beta R-II that binds ligand but lacks signaling activity was identified. This mutant was identified by screening with a TGF-beta-inducible vector a series of mink lung epithelial cell clones that have normal TGF-beta binding activity but have lost antiproliferative and transcriptional responses to TGF-beta. When transiently cotransfected with T beta R-II, one of these cell lines, S-21, recovered TGF-beta responsiveness. cDNA cloning and sequencing of T beta R-II from S-21 cells revealed a point mutation that changes proline 525 to leucine in kinase subdomain XI. A recombinant receptor containing this mutation, T beta R-II(P525L), is similar to wild-type T beta R-II in its abilities to bind ligand, support ligand binding to T beta R-I, and form a complex with T beta R-I in vivo. T beta R-II(P525L) has autophosphorylating activity in vitro and in vivo; however, unlike the wild-type receptor, it fails to phosphorylate an associated T beta R-I. These results suggest that T beta R-II(P525L) is a catalytically active receptor that cannot recognize T beta R-I as a substrate. The close link between T beta R-I transphosphorylation and signaling activity argues that transphosphorylation is essential for signal propagation via T beta R-I.


1994 ◽  
Vol 14 (6) ◽  
pp. 4280-4285
Author(s):  
A Bhushan ◽  
H Y Lin ◽  
H F Lodish ◽  
C R Kintner

The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells.


1993 ◽  
Vol 121 (2) ◽  
pp. 439-448 ◽  
Author(s):  
S Kojima ◽  
K Nara ◽  
D B Rifkin

A hitherto unknown function for transglutaminase (TGase; R-glutaminyl-peptide: amine gamma-glutamyltransferase, EC 2.3.2.13) was found in the conversion of latent transforming growth factor-beta (LTGF-beta) to active TGF-beta by bovine aortic endothelial cells (BAECs). The cell-associated, plasmin-mediated activation of LTGF-beta to TGF-beta induced either by treatment of BAECs with retinoids or by cocultures of BAECs and bovine smooth muscle cells (BSMCs) was blocked by seven different inhibitors of TGase as well as a neutralizing antibody to bovine endothelial cell type II TGase. Control experiments indicated that TGase inhibitors and/or a neutralizing antibody to TGase did not interfere with the direct action of TGF-beta, the release of LTGF-beta from cells, or the activation of LTGF-beta by plasmin or by transient acidification. After treatment with retinoids, BAECs expressed increased levels of TGase coordinate with the generation of TGF-beta, whereas BSMCs and bovine embryonic skin fibroblasts, which did not activate LTGF-beta after treatment with retinoids, did not. Furthermore, both TGase inhibitors and a neutralizing antibody to TGase potentiated the effect of retinol in enhancing plasminogen activator (PA) levels in cultures of BAECs by suppressing the TGF-beta-mediated enhancement of PA inhibitor-1 (PAI-1) expression. These results indicate that type II TGase is a component required for cell surface, plasmin-mediated LTGF-beta activation process and that increased expression of TGase accompanies retinoid-induced activation of LTGF-beta.


Sign in / Sign up

Export Citation Format

Share Document