scholarly journals Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences.

1993 ◽  
Vol 13 (5) ◽  
pp. 2697-2705 ◽  
Author(s):  
R H Schiestl ◽  
M Dominska ◽  
T D Petes

When the yeast Saccharomyces cerevisiae was transformed with DNA that shares no homology to the genome, three classes of transformants were obtained. In the most common class, the DNA was inserted as the result of a reaction that appears to require base pairing between the target sequence and the terminal few base pairs of the transforming DNA fragment. In the second class, no such homology was detected, and the transforming DNA was integrated next to a CTT or GTT in the target; it is likely that these integration events were mediated by topoisomerase I. The final class involved the in vivo ligation of transforming DNA with nucleus-localized linear fragments of mitochondrial DNA.

1993 ◽  
Vol 13 (5) ◽  
pp. 2697-2705
Author(s):  
R H Schiestl ◽  
M Dominska ◽  
T D Petes

When the yeast Saccharomyces cerevisiae was transformed with DNA that shares no homology to the genome, three classes of transformants were obtained. In the most common class, the DNA was inserted as the result of a reaction that appears to require base pairing between the target sequence and the terminal few base pairs of the transforming DNA fragment. In the second class, no such homology was detected, and the transforming DNA was integrated next to a CTT or GTT in the target; it is likely that these integration events were mediated by topoisomerase I. The final class involved the in vivo ligation of transforming DNA with nucleus-localized linear fragments of mitochondrial DNA.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


Genetics ◽  
1985 ◽  
Vol 111 (2) ◽  
pp. 233-241
Author(s):  
Joachim F Ernst ◽  
D Michael Hampsey ◽  
Fred Sherman

ABSTRACT ICR-170-induced mutations in the CYC1 gene of the yeast Saccharomyces cerevisiae were investigated by genetic and DNA sequence analyses. Genetic analysis of 33 cyc1 mutations induced by ICR-170 and sequence analysis of eight representatives demonstrated that over one-third were frameshift mutations that occurred at one site corresponding to amino acid positions 29-30, whereas the remaining mutations were distributed more-or-less randomly, and a few of these were not frameshift mutations. The sequence results indicate that ICR-170 primarily induces G·C additions at sites containing monotonous runs of three G·C base pairs. However, some (see PDF) sites within the CYC1 gene were not mutated by ICR-170. Thus, ICR-170 is a relatively specific mutagen that preferentially acts on certain sites with monotonous runs of G·C base pairs.


1982 ◽  
Vol 2 (1) ◽  
pp. 82-87
Author(s):  
M Fitzgerald-Hayes ◽  
J M Buhler ◽  
T G Cooper ◽  
J Carbon

We have cloned segments of yeast DNA containing the centromere XI-linked MET14 gene. This was done by selecting directly in Saccharomyces cerevisiae for complementation of a met14 mutation after transformation with a hybrid plasmid DNA genomic library. Genetic evidence indicates that functional centromere DNA (CEN11) from chromosome XI is also contained on the segment of S. cerevisiae DNA cloned in pYe(MET14)2. This plasmid is maintained stably in budding S. cerevisiae cultures and segregates predominantly 2+:20- through meiosis. The CEN11 element has been subcloned in vector YRp7' on an S. cerevisiae DNA fragment 900 base pairs in length [pYe(CEN11)10]. The mitotic and meiotic behavior of plasmids containing CEN11 plus a DNA replicator (ars) indicates that the centromere DNA sequences enable these plasmids to function as true minichromosomes in S. cerevisiae.


1986 ◽  
Vol 6 (1) ◽  
pp. 158-167 ◽  
Author(s):  
E Yeh ◽  
J Carbon ◽  
K Bloom

We used DNA fragments from the centromere regions of yeast (Saccharomyces cerevisiae) chromosomes III and XI to examine the transcriptional activity within this chromosomal domain. DNA transcripts were found 200 to 300 base pairs from the 250-base-pair centromere core and lie within an ordered chromatin array. No transcripts were detected from the functional centromere region. We examined the cellular function of one of these tightly centromere-linked transcripts. (CEN11)L, by disrupting the coding sequences in vivo and analyzing the phenotype of the mutant yeast cell. Diploids heterozygous for the (CEN11)L disruption sporulated at wild-type levels, and the absence of the (CEN11)L gene product had no effect on the viability or mitotic growth of haploid cells. Diploids homozygous for the (CEN11)L disruption were unable to sporulate when induced by the appropriate nutritional cues. The mutant cells were competent for intragenic recombination and appeared to be blocked at the mononucleate stage. The temporal ordering of (CEN11)L function with respect to the sporulation mutant spo13 suggests that the (CEN11)L gene product may be required at both the first and second meiotic cell divisions. This new sporulation gene has been termed SPO15.


1986 ◽  
Vol 6 (1) ◽  
pp. 158-167
Author(s):  
E Yeh ◽  
J Carbon ◽  
K Bloom

We used DNA fragments from the centromere regions of yeast (Saccharomyces cerevisiae) chromosomes III and XI to examine the transcriptional activity within this chromosomal domain. DNA transcripts were found 200 to 300 base pairs from the 250-base-pair centromere core and lie within an ordered chromatin array. No transcripts were detected from the functional centromere region. We examined the cellular function of one of these tightly centromere-linked transcripts. (CEN11)L, by disrupting the coding sequences in vivo and analyzing the phenotype of the mutant yeast cell. Diploids heterozygous for the (CEN11)L disruption sporulated at wild-type levels, and the absence of the (CEN11)L gene product had no effect on the viability or mitotic growth of haploid cells. Diploids homozygous for the (CEN11)L disruption were unable to sporulate when induced by the appropriate nutritional cues. The mutant cells were competent for intragenic recombination and appeared to be blocked at the mononucleate stage. The temporal ordering of (CEN11)L function with respect to the sporulation mutant spo13 suggests that the (CEN11)L gene product may be required at both the first and second meiotic cell divisions. This new sporulation gene has been termed SPO15.


1986 ◽  
Vol 6 (4) ◽  
pp. 1095-1101
Author(s):  
J G Yarger ◽  
G Armilei ◽  
M C Gorman

We analyzed a cloned fragment of the yeast URA3 promoter region that contains a sequence of DNA capable of functioning as a highly efficient transcription terminator. BAL 31 deletions have shown the signal for the transcription termination activity is less than or equal to 110 base pairs and resides between bases 45 and 155 upstream of the URA3 primary ATG codon at base 227. In our in vivo assay system, the DNA fragment is able to terminate transcripts very efficiently in either orientation. The terminated transcripts bind to oligodeoxythymidylate cellulose columns and promote the synthesis of full-length cDNAs, suggesting that the transcripts are polyadenylated. The 110-base-pair region contains no sequence resembling terminator consensus sequences described by Zaret and Sherman (K.S. Zaret and F. Sherman, Cell, 28:563-573, 1982) or Henikoff and Cohen (S. Henikoff and E.H. Cohen, Mol. Cell. Biol., 4:1515-1520, 1984). We discuss the possible physiological relevance of this sequence to bona fide termination of transcription and to URA3 regulation in Saccharomyces cerevisiae.


1983 ◽  
Vol 3 (1) ◽  
pp. 20-31
Author(s):  
V M Williamson ◽  
D Cox ◽  
E T Young ◽  
D W Russell ◽  
M Smith

Seven cis-dominant, constitutively expressed mutations of the normally glucose-repressible isozyme of alcohol dehydrogenase (ADHII) from the yeast Saccharomyces cerevisiae are caused by insertion of transposable elements from the Ty1 family in front of the ADHII structural gene (ADR2) (V. M. Williamson, E. T. Young, and M. Ciriacy, Cell 23:605-614, 1981). We cloned ADR2 with its associated Ty1 element from five S. cerevisiae strains carrying these mutations. Comparison of the Ty1 elements by heteroduplex studies and restriction enzyme analyses indicated that four were very similar; the fifth, although the same size as the others (about 5.6 kilobases), differed by the presence of two large substitutions of approximately 1 and 2 kilobases. The DNA sequences of the terminal direct repeats (deltas) were very homologous but not identical and were similar to previously reported Ty1 element direct repeats. We determined the 5'-flanking sequences of the ADR2 gene isolated from a wild-type strain and from five Ty1-associated mutations. The 5-base pair target sequence at the site of Ty1 insertion was present at both ends of each Ty1 element. The sites of insertion of the elements were all different and occurred from 125 to 210 base pairs in front of the coding region of ADR2. The 5' end of the major transcript as determined by S1 mapping was the same in wild-type cells and in Ty1-associated constitutive mutants and was approximately 54 base pairs upstream from the coding region. ADR2 transcripts were not detected when a solo delta sequence was present in the 5'-flanking region of this gene.


1986 ◽  
Vol 6 (12) ◽  
pp. 4425-4432
Author(s):  
D M Hampsey ◽  
R A Koski ◽  
F Sherman

The majority of the mutations induced by ICR-170 in both the CYC1 gene (J. F. Ernst et al. Genetics 111:233-241, 1985) and the HIS4 gene (L. Mathison and M. R. Culbertson, Mol. Cell. Biol. 5:2247-2256, 1985) of the yeast Saccharomyces cerevisiae were recently shown to be single G . C base-pair insertions at monotonous runs of two or more G . C base pairs. However, not all sites were equally mutable; in both the CYC1 and HIS4 genes there is a single highly mutable site where a G . C base pair is preferentially inserted at a [sequence in text]. Here we report the ICR-170 mutagen specificity at the SUP4-o tyrosine tRNA gene of yeast. Genetic fine structure analysis and representative DNA sequence determination of ICR-170-induced mutations revealed that there is also a single highly mutable site in SUP4-o and that the mutation is a G . C base-pair insertion at a monotonous run of G . C base pairs. Analysis of DNA sequences encompassing the regions of highly mutable sites for all three genes indicated that the mutable sites are at the bases of potential hairpin structures; this type of structure could not be found at any of the other, less mutable G . C runs in SUP4, CYC1, and HIS4. Based on these results and recent information regarding novel DNA structural conformations, we present a mechanism for ICR-170-induced mutagenesis. (i) ICR-170 preferentially binds to DNA in the beta conformation; factors that increase the temporal stability of this structure, such as adjacent stem-and-loop formation, increase the frequency of ICR-170 binding; (ii) the observed mutagen specificity reflects formation of a preferred ICR-170 intercalative geometry at [sequence in text] sites; (iii) during replication or repair, ICR-170 remains associated with the single-stranded template; (iv) stuttering or strand slippage by the polymerization complex as it encounters the mutagen results in nucleotide duplication; (v) subsequent replication or mismatch repair fixes the insertion into the genome. This mechanism accounts for both the IRC-170 mutagenic specificity and the molecular basis of the highly mutable sites in S. cerevisiae.


1986 ◽  
Vol 6 (2) ◽  
pp. 530-538 ◽  
Author(s):  
J McGrew ◽  
B Diehl ◽  
M Fitzgerald-Hayes

In this paper we show that a 211-base pair segment of CEN3 DNA is sufficient to confer wild-type centromere function in the yeast Saccharomyces cerevisiae. We used site-directed mutagenesis of the 211-base pair fragment to examine the sequence-specific functional requirements of a conserved 11-base pair segment of centromere DNA, element III (5'-TGATTTATCCGAA-3'). Element III is the most highly conserved of the centromeric DNA sequences, differing by only a single adenine X thymine base pair among the four centromere DNAs sequenced thus far. All of the element III sequences contain specific cytosine X guanine base pairs, including a 5'-CCG-3' arrangement, which we targeted for single cytosine-to-thymine mutations by using sodium bisulfite. The effects of element III mutations on plasmid and chromosome segregation were determined by mitotic stability assays. Conversion of CCG to CTG completely abolished centromere function both in plasmids and in chromosome III, whereas conversion of CCG to TCG decreased plasmid and chromosome stability moderately. The other two guanine X cytosine base pairs in element III could be independently converted to adenine X thymine base pairs without affecting plasmid or chromosome stability. We concluded that while some specific nucleotides within the conserved element III sequence are essential for proper centromere function, other conserved nucleotides can be changed.


Sign in / Sign up

Export Citation Format

Share Document