Elements regulating an alternatively spliced exon of the rat fibronectin gene

1993 ◽  
Vol 13 (9) ◽  
pp. 5301-5314 ◽  
Author(s):  
G S Huh ◽  
R O Hynes

We have investigated the regulation of splicing of one of the alternatively spliced exons in the rat fibronectin gene, the EIIIB exon. This 273-nucleotide exon is excluded by some cells and included to various degrees by others. We find that EIIIB is intrinsically poorly spliced and that both its exon sequences and its splice sites contribute to its poor recognition. Therefore, cells which recognize the EIIIB exon must have mechanisms for improving its splicing. Furthermore, in order for EIIB to be regulated, a balance must exist between the EIIIB splice sites and those of its flanking exons. Although the intron upstream of EIIIB does not appear to play a role in the recognition of EIIIB for splicing, the intron downstream contains sequence elements which can promote EIIIB recognition in a cell-type-specific fashion. These elements are located an unusually long distance from the exon that they regulate, more than 518 nucleotides downstream from EIIIB, and may represent a novel mode of exon regulation.

1993 ◽  
Vol 13 (9) ◽  
pp. 5301-5314 ◽  
Author(s):  
G S Huh ◽  
R O Hynes

We have investigated the regulation of splicing of one of the alternatively spliced exons in the rat fibronectin gene, the EIIIB exon. This 273-nucleotide exon is excluded by some cells and included to various degrees by others. We find that EIIIB is intrinsically poorly spliced and that both its exon sequences and its splice sites contribute to its poor recognition. Therefore, cells which recognize the EIIIB exon must have mechanisms for improving its splicing. Furthermore, in order for EIIB to be regulated, a balance must exist between the EIIIB splice sites and those of its flanking exons. Although the intron upstream of EIIIB does not appear to play a role in the recognition of EIIIB for splicing, the intron downstream contains sequence elements which can promote EIIIB recognition in a cell-type-specific fashion. These elements are located an unusually long distance from the exon that they regulate, more than 518 nucleotides downstream from EIIIB, and may represent a novel mode of exon regulation.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 593 ◽  
Author(s):  
Felipe Wendt Porto ◽  
Swapna Vidhur Daulatabad ◽  
Sarath Chandra Janga

Recent developments in our understanding of the interactions between long non-coding RNAs (lncRNAs) and cellular components have improved treatment approaches for various human diseases including cancer, vascular diseases, and neurological diseases. Although investigation of specific lncRNAs revealed their role in the metabolism of cellular RNA, our understanding of their contribution to post-transcriptional regulation is relatively limited. In this study, we explore the role of lncRNAs in modulating alternative splicing and their impact on downstream protein–RNA interaction networks. Analysis of alternative splicing events across 39 lncRNA knockdown and wildtype RNA-sequencing datasets from three human cell lines—HeLa (cervical cancer), K562 (myeloid leukemia), and U87 (glioblastoma)—resulted in the high-confidence (false discovery rate (fdr) < 0.01) identification of 11,630 skipped exon events and 5895 retained intron events, implicating 759 genes to be impacted at the post-transcriptional level due to the loss of lncRNAs. We observed that a majority of the alternatively spliced genes in a lncRNA knockdown were specific to the cell type. In tandem, the functions annotated to the genes affected by alternative splicing across each lncRNA knockdown also displayed cell-type specificity. To understand the mechanism behind this cell-type-specific alternative splicing pattern, we analyzed RNA-binding protein (RBP)–RNA interaction profiles across the spliced regions in order to observe cell-type-specific alternative splice event RBP binding preference. Despite limited RBP binding data across cell lines, alternatively spliced events detected in lncRNA perturbation experiments were associated with RBPs binding in proximal intron–exon junctions in a cell-type-specific manner. The cellular functions affected by alternative splicing were also affected in a cell-type-specific manner. Based on the RBP binding profiles in HeLa and K562 cells, we hypothesize that several lncRNAs are likely to exhibit a sponge effect in disease contexts, resulting in the functional disruption of RBPs and their downstream functions. We propose that such lncRNA sponges can extensively rewire post-transcriptional gene regulatory networks by altering the protein–RNA interaction landscape in a cell-type-specific manner.


Author(s):  
Felipe Wendt Porto ◽  
Swapna Vidhur Daulatabad ◽  
Sarath Chandra Janga

Background: Recent developments in our understanding of the interactions between long non-coding RNA (lncRNA) and cellular components have improved treatment approaches for various human diseases including cancer, vascular diseases, and neurological diseases. Although investigation of specific lncRNAs revealed their role in the metabolism of cellular RNA, our understanding of their contribution to post-transcriptional regulation is relatively limited. In this study, we explore the role of lncRNAs in modulating alternative splicing and their impact on downstream protein-RNA interaction networks. Results: Analysis of alternative splicing events across 39 lncRNA wildtype and knockout RNA-sequencing datasets from three human cell lines: HeLa (Cervical Cancer), K562 (Myeloid Leukemia), and U87 (Glioblastoma), resulted in high confidence (fdr &lt; 0.01) identification of 4432 skipped exon events and 2474 retained intron events, implicating 759 genes to be impacted at post-transcriptional level due to the loss of lncRNAs. We observed that a majority of the alternatively spliced genes in a lncRNA knockout were specific to the cell type, in agreement with the finding that genes affected by alternative splicing also displayed enriched functions in a cell type specific manner. To understand the mechanism behind this cell-type specific alternative splicing patterns, we analyzed RNA binding protein (RBP)-RNA interaction profiles across the spliced regions. Conclusions: Despite limited RBP binding data across cell lines, alternatively spliced events detected in lncRNA perturbation experiments were associated with RBPs binding in proximal intron-exon junctions, in a cell type specific manner. The cellular functions affected by alternative splicing were also affected in a cell type specific manner. Based on the RBP binding profiles in HeLa and K562 cells, we hypothesize that several lncRNAs are likely to exhibit a sponge effect in disease contexts, resulting in the functional disruption of RBPs due to altered titration of the RBPs from their target loci. We propose that such lncRNA sponges can extensively rewire the post-transcriptional gene regulatory networks by altering the protein-RNA interaction landscape in a cell-type specific manner.


2019 ◽  
Author(s):  
Felipe Wendt Porto ◽  
Swapna Vidhur Daulatabad ◽  
Sarath Chandra Janga

AbstractBackgroundRecent developments in our understanding of the interactions between long non-coding RNAs (lncRNAs) and cellular components have improved treatment approaches for various human diseases including cancer, vascular diseases, and neurological diseases. Although investigation of specific lncRNAs revealed their role in the metabolism of cellular RNA, our understanding of their contribution to post-transcriptional regulation is relatively limited. In this study, we explore the role of lncRNAs in modulating alternative splicing and their impact on downstream protein-RNA interaction networks.ResultsAnalysis of alternative splicing events across 39 lncRNA knockdown and wildtype RNA-sequencing datasets from three human cell lines: HeLa (Cervical Cancer), K562 (Myeloid Leukemia), and U87 (Glioblastoma), resulted in high confidence (fdr < 0.01) identification of 11630 skipped exon events and 5895 retained intron events, implicating 759 genes to be impacted at post-transcriptional level due to the loss of lncRNAs. We observed that a majority of the alternatively spliced genes in a lncRNA knockdown were specific to the cell type, in tandem, the functions annotated to the genes affected by alternative splicing across each lncRNA knockdown also displayed cell type specificity. To understand the mechanism behind this cell-type specific alternative splicing patterns, we analyzed RNA binding protein (RBP)-RNA interaction profiles across the spliced regions, to observe cell type specific alternative splice event RBP binding preference.ConclusionsDespite limited RBP binding data across cell lines, alternatively spliced events detected in lncRNA perturbation experiments were associated with RBPs binding in proximal intron-exon junctions, in a cell type specific manner. The cellular functions affected by alternative splicing were also affected in a cell type specific manner. Based on the RBP binding profiles in HeLa and K562 cells, we hypothesize that several lncRNAs are likely to exhibit a sponge effect in disease contexts, resulting in the functional disruption of RBPs, and their downstream functions. We propose that such lncRNA sponges can extensively rewire the post-transcriptional gene regulatory networks by altering the protein-RNA interaction landscape in a cell-type specific manner.


2017 ◽  
Vol 55 (05) ◽  
pp. e28-e56
Author(s):  
S Macheiner ◽  
R Gerner ◽  
A Pfister ◽  
A Moschen ◽  
H Tilg

2020 ◽  
Vol 528 (13) ◽  
pp. 2218-2238 ◽  
Author(s):  
Attilio Iemolo ◽  
Patricia Montilla‐Perez ◽  
I‐Chi Lai ◽  
Yinuo Meng ◽  
Syreeta Nolan ◽  
...  

2021 ◽  
Author(s):  
Moataz Dowaidar

Autophagy is a double-edged sword in cancer, and numerous aspects should be taken into account before deciding on the most effective strategy to target the process. The fact that several clinical studies are now ongoing does not mean that the patient group that may benefit from autophagy-targeting medicines has been identified. Autophagy inhibitors that are more potent and specialized, as well as autophagy indicators, are also desperately required. The fact that these inhibitors only work against tumors that rely on autophagy for survival (RAS mutants) makes it difficult to distinguish them from tumors that continue to develop even when autophagy is absent. Furthermore, mutations such as BRAF have been shown to make tumors more susceptible to autophagy suppression, suggesting that targeting such tumours may be a viable strategy for overcoming their chemotherapy resistance. In the meantime, we are unable to identify if autophagy regulation works in vivo or whether it selectively targets a disease while inflicting injury to other healthy organs and tissues. A cell-type-specific impact appears to be observed with such therapy. As a result, it is just as important to consider the differences between tumors that originate in different organs as it is to consider the signaling pathways that are similar across them. For a therapy or cure to be effective, the proposed intervention must be tailored to the specific needs of each patient.Over the last several years, a growing amount of data has implicated autophagy in a variety of disorders, including cancer. In normal cells, this catabolic process is also required for cell survival and homeostasis. Despite the fact that medications targeting intermediates in the autophagy signaling pathway are being created and evaluated at both the preclinical and clinical levels, given the complicated function of autophagy in cancer, we still have a long way to go in terms of establishing an effective therapeutic approach. This article discusses current tactics for exploiting cancer cells' autophagy dependency, as well as obstacles in the area. We believe that the unanswered concerns raised in this work will stimulate researchers to investigate previously unknown connections between autophagy and other signaling pathways, which might lead to the development of novel, highly specialized autophagy therapies.


Sign in / Sign up

Export Citation Format

Share Document