scholarly journals Identification and characterization of a novel GGA/C-binding protein, GBP-i, that is rapidly inducible by cytokines.

1994 ◽  
Vol 14 (12) ◽  
pp. 7770-7781 ◽  
Author(s):  
G V Raj ◽  
K Khalili

Immunosuppressive states with accompanying alterations in cytokine profiles have been postulated to play a vital role in the reactivation of viruses from latency. Cytokines regulate gene expression by activating transcription factors via well-characterized signal transduction pathways. In this study, we report the identification of a novel inducible protein, GBP-i, that binds to a double-stranded GGA/C-rich region of the transcriptional control region of the human papovavirus JC virus (JCV), specifically within the origin of viral DNA replication. GBP-i is distinct from previously characterized GC-box-binding proteins with respect to both its sequence specificity and its electrophoretic mobility on native and denaturing gels. GBP-i responds within 90 min to phorbol myristate acetate stimulation; however, unlike typical phorbol myristate acetate-inducible factors, this rapid induction is regulated primarily at the transcriptional level. Further, the induction of GBP-i appears to be widespread and mediated by many inflammatory cytokines, including interleukin-1 beta, tumor necrosis factor alpha, gamma interferon, and transforming growth factor beta. Interestingly, the induced protein acts as a transcriptional repressor in its native context in the JCVL promoter. However, when its binding sequence is transposed to a heterologous promoter, GBP-i appears to function as a transcriptional activator. The data presented here suggest a role for GBP-i in cytokine-mediated induction of viral and cellular genes.

1994 ◽  
Vol 14 (12) ◽  
pp. 7770-7781
Author(s):  
G V Raj ◽  
K Khalili

Immunosuppressive states with accompanying alterations in cytokine profiles have been postulated to play a vital role in the reactivation of viruses from latency. Cytokines regulate gene expression by activating transcription factors via well-characterized signal transduction pathways. In this study, we report the identification of a novel inducible protein, GBP-i, that binds to a double-stranded GGA/C-rich region of the transcriptional control region of the human papovavirus JC virus (JCV), specifically within the origin of viral DNA replication. GBP-i is distinct from previously characterized GC-box-binding proteins with respect to both its sequence specificity and its electrophoretic mobility on native and denaturing gels. GBP-i responds within 90 min to phorbol myristate acetate stimulation; however, unlike typical phorbol myristate acetate-inducible factors, this rapid induction is regulated primarily at the transcriptional level. Further, the induction of GBP-i appears to be widespread and mediated by many inflammatory cytokines, including interleukin-1 beta, tumor necrosis factor alpha, gamma interferon, and transforming growth factor beta. Interestingly, the induced protein acts as a transcriptional repressor in its native context in the JCVL promoter. However, when its binding sequence is transposed to a heterologous promoter, GBP-i appears to function as a transcriptional activator. The data presented here suggest a role for GBP-i in cytokine-mediated induction of viral and cellular genes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Małgorzata Chmielewska-Krzesińska ◽  
Krzysztof Wąsowicz

Abstract Introduction Ozone is not harmful itself; however, it directly oxidises biomolecules and produces radical-dependent cytotoxicity. Exposure to ozone is by inhalation and therefore the lungs develop the main anti-inflammatory response, while ozone has an indirect impact on the other organs. This study investigated the local and systemic effects of the ozone-associated inflammatory response. Material and Methods Three groups each of 5 Wistar Han rats aged 6 months were exposed for 2h to airborne ozone at 0.5 ppm and a fourth identical group were unexposed controls. Sacrifice was at 3h after exposure for control rats and one experimental group and at 24 h and 48 h for the others. Lung and liver samples were evaluated for changes in expression of transforming growth factor beta 1, anti-inflammatory interleukin 10, pro-inflammatory tumour necrosis factor alpha and interleukin 1 beta and two nuclear factor kappa-light-chain-enhancer of B cells subunit genes. Total RNA was isolated from the samples in spin columns and cDNA was synthesised in an RT-PCR. Expression levels were compared to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and analysed statistically. Results All variables changed non-linearly over time comparing experimental groups to the control. Conspicuous expression changes in the subunit genes and cytokines were observed in both evaluated organs. Conclusion Locally and systemically, inflammation responses to ozone inhalation include regulation of certain genes’ expression. The mechanisms are unalike in lungs and liver but ozone exerts a similar effect in both organs. A broader range of variables influential on ozone response should be studied in the future.


1991 ◽  
Vol 11 (10) ◽  
pp. 4885-4894 ◽  
Author(s):  
C L Miller ◽  
A L Feldhaus ◽  
J W Rooney ◽  
L D Rhodes ◽  
C H Sibley ◽  
...  

The Oct-2 gene appears to encode a developmental regulator of immunoglobulin gene transcription. We demonstrate that the Oct-2 gene is expressed at low levels in a variety of transformed pre-B-cell lines and is induced specifically in these cells by lipopolysaccharide signalling. This work extends an earlier observation in the pre-B-cell line 70Z/3 and therefore suggests that the inducible expression of the Oct-2 gene, like that of the kappa gene, is a characteristic feature of the pre-B stage of B-cell development. In 70Z/3 cells, the lymphokine interleukin-1 also induces the expression of the Oct-2 and kappa loci. Interestingly, expression of the Oct-2 gene is rapidly induced at the transcriptional level and may not require de novo protein synthesis. Since the changes in the activity of the Oct-2 locus completely correlate with the changes of the activity of the kappa locus, the two genes may be transcriptionally regulated by a common trans-acting factor. In 70Z/3 cells, transforming growth factor beta, an inhibitor of kappa-gene induction, blocks the upregulation of Oct-2 but not the activation of NF-kappa B. These results suggest that the combinatorial action of increased levels of Oct-2 and activated NF-kappa B may be necessary for the proper stage-specific expression of the kappa locus.


Blood ◽  
1994 ◽  
Vol 84 (12) ◽  
pp. 4151-4156 ◽  
Author(s):  
S Jiang ◽  
JD Levine ◽  
Y Fu ◽  
B Deng ◽  
R London ◽  
...  

Primary human bone marrow megakaryocytes were studied for their ability to express and release cytokines potentially relevant to their proliferation and/or differentiation. The purity of the bone marrow megakaryocytes was assessed by morphologic and immunocytochemical criteria. Unstimulated marrow megakaryocytes constitutively expressed genes for interleukin-1 beta (IL-1 beta), IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha), by the polymerase chain reaction (PCR) and Northern blot analysis. At the protein level, megakaryocytes secreted significant amounts of IL-1 beta (53.6 +/- 3.6 pg/mL), IL-6 (57.6 +/- 15.6 pg/mL), and GM-CSF (24 +/- 4 pg/mL) but not TNF-alpha. Exposure of human marrow megakaryocytes to IL-1 beta increased the levels of IL-6 (87.3 +/- 2.3 pg/mL) detected in the culture supernatants. Transforming growth factor- beta was also able to stimulate IL-6, IL-1 beta, and GM-CSF secretion, but was less potent than stimulation with phorbol-12-myristate-13- acetate (PMA). The secreted cytokines acted additively to maintain and increase the number of colony-forming unit-megakaryocytes colonies (approximately 35%). These studies demonstrate the production of multiple cytokines by isolated human bone marrow megakaryocytes constitutively or stimulated in vitro. The capacity of human megakaryocytes to synthesize several cytokines known to modulate hematopoietic cells supports the concept that there may be an autocrine mechanism operative in the regulation of megakaryocytopoiesis.


1996 ◽  
Vol 271 (1) ◽  
pp. G130-G136 ◽  
Author(s):  
L. A. Dieleman ◽  
C. O. Elson ◽  
G. S. Tennyson ◽  
K. W. Beagley

The mechanisms of wound healing in the gut are poorly understood but are mediated by cytokines in other tissues. In this study we wanted to determine which cytokines were expressed after nonspecific colonic injury, the kinetics of that expression, and how cytokine expression correlated with tissue histology. At 0, 4, 8, 12, 24, 48, and 72 h after intrarectal administration of 3% acetic acid to C3H/HeJ mice, their colons were removed for histology, organ culture, and RNA extraction. Cytokine mRNA expression for various cytokines was assessed by reverse transcriptase-polymerase chain reaction with primers specific for each cytokine. Cytokine production in organ cultures was measured with bioassays. Shortly after colonic injury and during colonic regeneration, proinflammatory cytokines such as interleukin-1 beta (IL-1 beta), IL-6, tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein (MIP), and transforming growth factor-beta (TGF-beta) were expressed. In contrast, expression of T cell-derived cytokines was not detected at any time point. Cytokines such as IL-1 beta, IL-6, IL-10, TNF-alpha, and MIP-1 are important mediators of tissue repair and restitution after nonspecific colonic injury and may subserve a similar role in human colitis.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 152-160 ◽  
Author(s):  
I Schwager ◽  
TW Jungi

Abstract A panel of human recombinant cytokines was tested for induction of procoagulant activity (PCA) in human monocyte-derived macrophages. Nonadherent culture conditions were used, and PCA was determined with whole cells rather than cell lysates. It was assured by Limulus amebocyte lysate assay that tested cytokines displayed low levels of endotoxin activity within the range of biologic activity. Additional evidence to rule out an endotoxin effect was provided by heat- inactivation experiments. Interferon-gamma (IFN-gamma), interleukin-1 beta (IL-1 beta), and tumor necrosis factor-alpha (TNF-alpha) were strong macrophage PCA inducers. The low level of PCA induced by IL-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), M-CSF, IL-4, IL-6, IL-10, and IFN-alpha could not be distinguished from that induced by traces of endotoxin contaminating the preparations. Transforming growth factor-beta decreased constitutively expressed PCA within 24 hours of exposure. PCA induced by IFN-gamma, IL-1 beta, and TNF-alpha depended largely on tissue factor expression, as evidenced by experiments with factor X-deficient plasma and antitissue factor antibodies. In macrophages subcultured in adherence, IL-1 beta was a strong PCA inducer, whereas IFN-gamma and TNF-alpha promoted little PCA increase. This observation and different kinetics of PCA induction suggested that mechanisms of PCA induction are distinct for the three cytokines. Thus, we showed that well-characterized cytokines critically involved in the promotion of cell-mediated antimicrobial defense/delayed-type hypersensitivity and considered for clinical application promote local fibrin deposition by a direct effect on macrophages.


Blood ◽  
1995 ◽  
Vol 85 (12) ◽  
pp. 3636-3645 ◽  
Author(s):  
R Bhatia ◽  
PB McGlave ◽  
GW Dewald ◽  
BR Blazar ◽  
CM Verfaillie

The bone marrow microenvironment supports and regulates the proliferation and differentiation of hematopoietic cells. Dysregulated hematopoiesis in chronic myelogenous leukemia (CML) is caused, at least in part, by abnormalities in CML hematopoietic progenitors leading to altered interactions with the marrow microenvironment. The role of the microenvironment itself in CML has not been well characterized. We examined the capacity of CML stroma to support the growth of long-term culture-initiating cells (LTC-IC) obtained from normal and CML marrow. The growth of normal LTC-IC on CML stroma was significantly reduced compared with normal stroma. This did not appear to be related to abnormal production of soluble factors by CML stroma because normal LTC-IC grew equally well in Transwells above CML stroma as in Transwells above normal stroma. In addition, CML and normal stromal supernatants contained similar quantities of both growth-stimulatory (granulocyte colony-stimulating factor (CSF), interleukin-6, stem cell factor, granulocyte-macrophage CSF, and interleukin-1 beta) and growth-inhibitory cytokines (transforming growth factor-beta, macrophage inflammatory protein-1 alpha, and tumor necrosis factor-alpha). The relative proportion of different cell types in CML and normal stroma was similar. However, polymerase chain reaction and fluorescence in situ hybridization studies showed the presence of bcr-abl-positivo cells in CML stroma, which were CD14+ stromal macrophages. To assess the effect of these malignant macrophages on stromal function, CML and normal stromal cells were separated by fluorescence-activated cell sorting into stromal mesenchymal cell (CD14-) and macrophage (CD14+) populations. CML and normal CD14-cells supported the growth of normal LTC-IC equally well. However, the addition of CML macrophages to normal or CML CD14-mesenchymal cells resulted in impaired progenitor support. This finding indicates that the abnormal function of CML bone marrow stroma is related to the presence of malignant macrophages. In contrast to normal LTC-IC, the growth of CML LTC-IC on allogeneic CML stromal layers was not impaired and was significantly better than that of normal LTC-IC cocultured with the same CML stromal layers. These studies demonstrate that, in addition to abnormalities in CML progenitors themselves, abnormalities in the CML marrow microenvironment related to the presence of malignant stromal macrophages may contribute to the selective expansion of leukemic progenitors and suppression of normal hematopoiesis in CML.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 152-160 ◽  
Author(s):  
I Schwager ◽  
TW Jungi

A panel of human recombinant cytokines was tested for induction of procoagulant activity (PCA) in human monocyte-derived macrophages. Nonadherent culture conditions were used, and PCA was determined with whole cells rather than cell lysates. It was assured by Limulus amebocyte lysate assay that tested cytokines displayed low levels of endotoxin activity within the range of biologic activity. Additional evidence to rule out an endotoxin effect was provided by heat- inactivation experiments. Interferon-gamma (IFN-gamma), interleukin-1 beta (IL-1 beta), and tumor necrosis factor-alpha (TNF-alpha) were strong macrophage PCA inducers. The low level of PCA induced by IL-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), M-CSF, IL-4, IL-6, IL-10, and IFN-alpha could not be distinguished from that induced by traces of endotoxin contaminating the preparations. Transforming growth factor-beta decreased constitutively expressed PCA within 24 hours of exposure. PCA induced by IFN-gamma, IL-1 beta, and TNF-alpha depended largely on tissue factor expression, as evidenced by experiments with factor X-deficient plasma and antitissue factor antibodies. In macrophages subcultured in adherence, IL-1 beta was a strong PCA inducer, whereas IFN-gamma and TNF-alpha promoted little PCA increase. This observation and different kinetics of PCA induction suggested that mechanisms of PCA induction are distinct for the three cytokines. Thus, we showed that well-characterized cytokines critically involved in the promotion of cell-mediated antimicrobial defense/delayed-type hypersensitivity and considered for clinical application promote local fibrin deposition by a direct effect on macrophages.


Sign in / Sign up

Export Citation Format

Share Document