scholarly journals U20, a novel small nucleolar RNA, is encoded in an intron of the nucleolin gene in mammals.

1994 ◽  
Vol 14 (9) ◽  
pp. 5766-5776 ◽  
Author(s):  
M Nicoloso ◽  
M Caizergues-Ferrer ◽  
B Michot ◽  
M C Azum ◽  
J P Bachellerie

We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene.

1994 ◽  
Vol 14 (9) ◽  
pp. 5766-5776
Author(s):  
M Nicoloso ◽  
M Caizergues-Ferrer ◽  
B Michot ◽  
M C Azum ◽  
J P Bachellerie

We have found that intron 11 of the nucleolin gene in humans and rodents encodes a previously unidentified small nucleolar RNA, termed U20. The single-copy U20 sequence is located on the same DNA strand as the nucleolin mRNA. U20 RNA, which does not possess a trimethyl cap, appears to result from intronic RNA processing and not from transcription of an independent gene. In mammals, U20 RNA is an 80-nucleotide-long, metabolically stable species, present at about 7 x 10(3) molecules per exponentially growing HeLa cell. It has a nucleolar localization, as indicated by fluorescence microscopy following in situ hybridization with digoxigenin-labeled oligonucleotides. U20 RNA contains the box C and box D sequence motifs, hallmarks of most small nucleolar RNAs reported to date, and is immunoprecipitated by antifibrillarin antibodies. It also exhibits a 5'-3' terminal stem bracketing the box C-box D motifs like U14, U15, U16, or Y RNA. A U20 homolog of similar size has been detected in all vertebrate classes by Northern (RNA) hybridization with mammalian oligonucleotide probes. U20 RNA contains an extended region (21 nucleotides) of perfect complementarity with a phylogenetically conserved sequence in 18S rRNA. This complementarity is strongly preserved among distant vertebrates, suggesting that U20 RNA may be involved in the formation of the small ribosomal subunit like nucleolin, the product of its host gene.


2004 ◽  
Vol 24 (4) ◽  
pp. 1769-1778 ◽  
Author(s):  
Vera Atzorn ◽  
Paola Fragapane ◽  
Tamás Kiss

ABSTRACT Saccharomyces cerevisiae snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) required for the processing of 18S rRNA. Here, we show that the previously characterized human, reptilian, amphibian, and fish U17 snoRNAs represent the vertebrate homologues of yeast snR30. We also demonstrate that U17/snR30 is present in the fission yeast Schizosaccharomyces pombe and the unicellular ciliated protozoan Tetrahymena thermophila. Evolutionary comparison revealed that the 3′-terminal hairpins of U17/snR30 snoRNAs contain two highly conserved sequence motifs, the m1 (AUAUUCCUA) and m2 (AAACCAU) elements. Mutation analysis of yeast snR30 demonstrated that the m1 and m2 elements are essential for early cleavages of the 35S pre-rRNA and, consequently, for the production of mature 18S rRNA. The m1 and m2 motifs occupy the opposite strands of an internal loop structure, and they are located invariantly 7 nucleotides upstream from the ACA box of U17/snR30 snoRNAs. U17/snR30 is the first identified box H/ACA snoRNA that possesses an evolutionarily conserved role in the nucleolytic processing of eukaryotic pre-rRNA.


2018 ◽  
Author(s):  
Taiwa Komatsu ◽  
Mari Mito ◽  
Koichi Fujii ◽  
Shintaro Iwasaki ◽  
Shinichi Nakagawa

SummaryWhile a large number of long noncoding RNAs (lncRNAs) are transcribed from the genome of higher eukaryotes, systematic prediction of their functionality has been challenging due to the lack of conserved sequence motifs or structures. Assuming that lncRNAs function as large ribonucleoprotein complexes and thus are easily crosslinked to proteins upon UV irradiation, we performed RNA-Seq analyses of RNAs recovered from the aqueous phase after UV irradiation and phenol-chloroform extraction (UPA-Seq). As expected, the numbers of UPA-Seq reads mapped to known functional lncRNAs were remarkably reduced upon UV irradiation. Comparison with ENCODE eCLIP data revealed that lncRNAs that exhibited greater decreases upon UV irradiation preferentially associated with proteins containing prion-like domains (PrLDs). Fluorescent in situ hybridization (FISH) analyses revealed the nuclear localization of novel functional lncRNA candidates, including one that accumulated at the site of transcription. We propose that UPA-Seq provides a useful tool for the selection of lncRNA candidates to be analyzed in depth in subsequent functional studies.


1999 ◽  
Vol 19 (12) ◽  
pp. 8412-8421 ◽  
Author(s):  
Wayne Speckmann ◽  
Aarthi Narayanan ◽  
Rebecca Terns ◽  
Michael P. Terns

ABSTRACT The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C′ and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5′ cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements.


2019 ◽  
Author(s):  
Jisue Moon ◽  
Carter Abney ◽  
Dmitriy Dolzhnikov ◽  
James M. Kurley ◽  
Kevin A. Beyer ◽  
...  

The local structure of dilute CrCl<sub>3</sub> in a molten MgCl<sub>2</sub>:KCl salt was investigated by <i>in situ</i> x-ray absorption spectroscopy (XAS) at temperatures from room temperature to 800<sup>o</sup>C. This constitutes the first experiment where dilute Cr speciation is explored in a molten chloride salt, ostensibly due to the compounding challenges arising from a low Cr concentration in a matrix of heavy absorbers at extreme temperatures. CrCl<sub>3</sub> was confirmed to be the stable species between 200 and 500<sup>o</sup>C, while mobility of metal ions at higher temperature (>700<sup>o</sup>C) prevented confirmation of the local structure.


Author(s):  
Yanrong Ji ◽  
Zhihan Zhou ◽  
Han Liu ◽  
Ramana V Davuluri

Abstract Motivation Deciphering the language of non-coding DNA is one of the fundamental problems in genome research. Gene regulatory code is highly complex due to the existence of polysemy and distant semantic relationship, which previous informatics methods often fail to capture especially in data-scarce scenarios. Results To address this challenge, we developed a novel pre-trained bidirectional encoder representation, named DNABERT, to capture global and transferrable understanding of genomic DNA sequences based on up and downstream nucleotide contexts. We compared DNABERT to the most widely used programs for genome-wide regulatory elements prediction and demonstrate its ease of use, accuracy and efficiency. We show that the single pre-trained transformers model can simultaneously achieve state-of-the-art performance on prediction of promoters, splice sites and transcription factor binding sites, after easy fine-tuning using small task-specific labeled data. Further, DNABERT enables direct visualization of nucleotide-level importance and semantic relationship within input sequences for better interpretability and accurate identification of conserved sequence motifs and functional genetic variant candidates. Finally, we demonstrate that pre-trained DNABERT with human genome can even be readily applied to other organisms with exceptional performance. We anticipate that the pre-trained DNABERT model can be fined tuned to many other sequence analyses tasks. Availability and implementation The source code, pretrained and finetuned model for DNABERT are available at GitHub (https://github.com/jerryji1993/DNABERT). Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ami Shah ◽  
Madison Ratkowski ◽  
Alessandro Rosa ◽  
Paul Feinstein ◽  
Thomas Bozza

AbstractOlfactory sensory neurons express a large family of odorant receptors (ORs) and a small family of trace amine-associated receptors (TAARs). While both families are subject to so-called singular expression (expression of one allele of one gene), the mechanisms underlying TAAR gene choice remain obscure. Here, we report the identification of two conserved sequence elements in the mouse TAAR cluster (T-elements) that are required for TAAR gene expression. We observed that cell-type-specific expression of a TAAR-derived transgene required either T-element. Moreover, deleting either element reduced or abolished expression of a subset of TAAR genes, while deleting both elements abolished olfactory expression of all TAARs in cis with the mutation. The T-elements exhibit several features of known OR enhancers but also contain highly conserved, unique sequence motifs. Our data demonstrate that TAAR gene expression requires two cooperative cis-acting enhancers and suggest that ORs and TAARs share similar mechanisms of singular expression.


Genetics ◽  
1993 ◽  
Vol 134 (4) ◽  
pp. 1039-1044 ◽  
Author(s):  
I J Fijalkowska ◽  
R M Schaaper

Abstract The dnaE gene of Escherichia coli encodes the DNA polymerase (alpha subunit) of the main replicative enzyme, DNA polymerase III holoenzyme. We have previously identified this gene as the site of a series of seven antimutator mutations that specifically decrease the level of DNA replication errors. Here we report the nucleotide sequence changes in each of the different antimutator dnaE alleles. For each a single, but different, amino acid substitution was found among the 1,160 amino acids of the protein. The observed substitutions are generally nonconservative. All affected residues are located in the central one-third of the protein. Some insight into the function of the regions of polymerase III containing the affected residues was obtained by amino acid alignment with other DNA polymerases. We followed the principles developed in 1990 by M. Delarue et al. who have identified in DNA polymerases from a large number of prokaryotic and eukaryotic sources three highly conserved sequence motifs, which are suggested to contain components of the polymerase active site. We succeeded in finding these three conserved motifs in polymerase III as well. However, none of the amino acid substitutions responsible for the antimutator phenotype occurred at these sites. This and other observations suggest that the effect of these mutations may be exerted indirectly through effects on polymerase conformation and/or DNA/polymerase interactions.


2015 ◽  
Vol 71 (12) ◽  
pp. 2505-2512 ◽  
Author(s):  
Magdalena Schacherl ◽  
Angelika A. M. Montada ◽  
Elena Brunstein ◽  
Ulrich Baumann

The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins fromHelicobacterandSalmonella. The first crystal structure analysis of a U32 catalytic domain fromMethanopyrus kandleri(genemk0906) reveals a modified (βα)8TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to aStrep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.


Sign in / Sign up

Export Citation Format

Share Document