scholarly journals Segregation of unreplicated chromosomes in Saccharomyces cerevisiae reveals a novel G1/M-phase checkpoint.

1995 ◽  
Vol 15 (10) ◽  
pp. 5312-5321 ◽  
Author(s):  
J H Toyn ◽  
A L Johnson ◽  
L H Johnston

Saccharomyces cerevisiae dbf4 and cdc7 cell cycle mutants block initiation of DNA synthesis (i.e., are iDS mutants) at 37 degrees C and arrest the cell cycle with a 1C DNA content. Surprisingly, certain dbf4 and cdc7 strains divide their chromatin at 37 degrees C. We found that the activation of the Cdc28 mitotic protein kinase and the Dbf2 kinase occurred with the correct relative timing with respect to each other and the observed division of the unreplicated chromatin. Furthermore, the division of unreplicated chromatin depended on a functional spindle. Therefore, the observed nuclear division resembled a normal mitosis, suggesting that S. cerevisiae commits to M phase in late G1 independently of S phase. Genetic analysis of dbf4 and cdc7 strains showed that the ability to restrain mitosis during a late G1 block depended on the genetic background of the strain concerned, since the dbf4 and cdc7 alleles examined showed the expected mitotic restraint in other backgrounds. This restraint was genetically dominant to lack of restraint, indicating that an active arrest mechanism, or checkpoint, was involved. However, none of the previously described mitotic checkpoint pathways were defective in the iDS strains that carry out mitosis without replicated DNA, therefore indicating that the checkpoint pathway that arrests mitosis in iDS mutants is novel. Thus, spontaneous strain differences have revealed that S. cerevisiae commits itself to mitosis in late G1 independently of entry into S phase and that a novel checkpoint mechanism can restrain mitosis if cells are blocked in late G1. We refer to this as the G1/M-phase checkpoint since it acts in G1 to restrain mitosis.

2000 ◽  
Vol 20 (8) ◽  
pp. 2794-2802 ◽  
Author(s):  
Neptune Mizrahi ◽  
Claire Moore

ABSTRACT The poly(A) polymerase of the budding yeast Saccharomyces cerevisiae (Pap1) is a 64-kDa protein essential for the maturation of mRNA. We have found that a modified Pap1 of 90 kDa transiently appears in cells after release from α-factor-induced G1 arrest or from a hydroxyurea-induced S-phase arrest. While a small amount of modification occurs in hydroxyurea-arrested cells, fluorescence-activated cell sorting analysis and microscopic examination of bud formation indicate that the majority of modified enzyme is found at late S/G2 and disappears by the time cells have reached M phase. The reduction of the 90-kDa product upon phosphatase treatment indicates that the altered mobility is due to phosphorylation. A preparation containing primarily the phosphorylated Pap1 has no poly(A) addition activity, but this activity is restored by phosphatase treatment. A portion of Pap1 is also polyubiquitinated concurrent with phosphorylation. However, the bulk of the 64-kDa Pap1 is a stable protein with a half-life of 14 h. The timing, nature, and extent of Pap1 modification in comparison to the mitotic phosphorylation of mammalian poly(A) polymerase suggest an intriguing difference in the cell cycle regulation of this enzyme in yeast and mammalian systems.


1993 ◽  
Vol 13 (4) ◽  
pp. 2113-2125
Author(s):  
N Grandin ◽  
S I Reed

We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.


1997 ◽  
Vol 8 (8) ◽  
pp. 1587-1601 ◽  
Author(s):  
M R Young ◽  
B K Tye

The Mcm2-7 proteins are a family of conserved proteins whose functions are essential for the initiation of DNA synthesis in all eukaryotes. These patients are constitutively present in high abundance in actively proliferating cells. In Saccharomyces cerevisiae, the intracellular concentrations of Mcms are between 100 and 500 times the number of replication origins. However, these proteins are limiting for the initiation of DNA synthesis at replication origins. Our studies indicate that only a small fraction of Mcm2 and Mcm3 tightly associates with chromatin, from late M phase to the beginning of the S phase. The rest of the Mcm2 and Mcm3 proteins are disturbed to both the cytoplasm and nucleoplasm in relatively constant levels throughout the cell cycle. We also show that S. cerevisiae Mcm3 is a phosphoprotein that exists in multiple isoforms and that distinct isoforms of Mcm2 and Mcm3 can be detected at specific stages of the cell cycle. These results suggest that the localization and function of the Mcm proteins are regulated by posttranslational phosphorylation in a manner that is consistent with a role for the Mcm proteins in restricting DNA replication to once per cell cycle.


1991 ◽  
Vol 11 (7) ◽  
pp. 3691-3698 ◽  
Author(s):  
D J Burke ◽  
D Church

Protein synthesis inhibitors have often been used to identify regulatory steps in cell division. We used cell division cycle mutants of the yeast Saccharomyces cerevisiae and two chemical inhibitors of translation to investigate the requirements for protein synthesis for completing landmark events after the G1 phase of the cell cycle. We show, using cdc2, cdc6, cdc7, cdc8, cdc17 (38 degrees C), and cdc21 (also named tmp1) mutants, that cells arrested in S phase complete DNA synthesis but cannot complete nuclear division if protein synthesis is inhibited. In contrast, we show, using cdc16, cdc17 (36 degrees C), cdc20, cdc23, and nocodazole treatment, that cells that arrest in the G2 stage complete nuclear division in the absence of protein synthesis. Protein synthesis is required late in the cell cycle to complete cytokinesis and cell separation. These studies show that there are requirements for protein synthesis in the cell cycle, after G1, that are restricted to two discrete intervals.


1993 ◽  
Vol 13 (4) ◽  
pp. 2113-2125 ◽  
Author(s):  
N Grandin ◽  
S I Reed

We have studied the patterns of expression of four B-type cyclins (Clbs), Clb1, Clb2, Clb3, and Clb4, and their ability to activate p34cdc28 during the mitotic and meiotic cell cycles of Saccharomyces cerevisiae. During the mitotic cell cycle, Clb3 and Clb4 were expressed and induced a kinase activity in association with p34cdc28 from early S phase up to mitosis. On the other hand, Clb1 and Clb2 were expressed and activated p34cdc28 later in the mitotic cell cycle, starting in late S phase and continuing up to mitosis. The pattern of expression of Clb3 and Clb4 suggests a possible role in the regulation of DNA replication as well as mitosis. Clb1 and Clb2, whose pattern of expression is similar to that of other known Clbs, are likely to have a role predominantly in the regulation of M phase. During the meiotic cell cycle, Clb1, Clb3, and Clb4 were expressed and induced a p34cdc28-associated kinase activity just before the first meiotic division. The fact that Clb3 and Clb4 were not synthesized earlier, in S phase, suggests that these cyclins, which probably have a role in S phase during the mitotic cell cycle, are not implicated in premeiotic S phase. Clb2, the primary mitotic cyclin in S. cerevisiae, was not detectable during meiosis. Sporulation experiments on strains deleted for one, two, or three Clbs indicate, in agreement with the biochemical data, that Clb1 is the primary cyclin for the regulation of meiosis, while Clb2 is not involved at all.


1991 ◽  
Vol 11 (7) ◽  
pp. 3691-3698
Author(s):  
D J Burke ◽  
D Church

Protein synthesis inhibitors have often been used to identify regulatory steps in cell division. We used cell division cycle mutants of the yeast Saccharomyces cerevisiae and two chemical inhibitors of translation to investigate the requirements for protein synthesis for completing landmark events after the G1 phase of the cell cycle. We show, using cdc2, cdc6, cdc7, cdc8, cdc17 (38 degrees C), and cdc21 (also named tmp1) mutants, that cells arrested in S phase complete DNA synthesis but cannot complete nuclear division if protein synthesis is inhibited. In contrast, we show, using cdc16, cdc17 (36 degrees C), cdc20, cdc23, and nocodazole treatment, that cells that arrest in the G2 stage complete nuclear division in the absence of protein synthesis. Protein synthesis is required late in the cell cycle to complete cytokinesis and cell separation. These studies show that there are requirements for protein synthesis in the cell cycle, after G1, that are restricted to two discrete intervals.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


2001 ◽  
Vol 154 (2) ◽  
pp. 331-344 ◽  
Author(s):  
Daniel Kornitzer ◽  
Rakefet Sharf ◽  
Tamar Kleinberger

Adenovirus early region 4 open reading frame 4 (E4orf4) protein has been reported to induce p53-independent, protein phosphatase 2A (PP2A)–dependent apoptosis in transformed mammalian cells. In this report, we show that E4orf4 induces an irreversible growth arrest in Saccharomyces cerevisiae at the G2/M phase of the cell cycle. Growth inhibition requires the presence of yeast PP2A-Cdc55, and is accompanied by accumulation of reactive oxygen species. E4orf4 expression is synthetically lethal with mutants defective in mitosis, including Cdc28/Cdk1 and anaphase-promoting complex/cyclosome (APC/C) mutants. Although APC/C activity is inhibited in the presence of E4orf4, Cdc28/Cdk1 is activated and partially counteracts the E4orf4-induced cell cycle arrest. The E4orf4–PP2A complex physically interacts with the APC/C, suggesting that E4orf4 functions by directly targeting PP2A to the APC/C, thereby leading to its inactivation. Finally, we show that E4orf4 can induce G2/M arrest in mammalian cells before apoptosis, indicating that E4orf4-induced events in yeast and mammalian cells are highly conserved.


2000 ◽  
Vol 74 (19) ◽  
pp. 9152-9166 ◽  
Author(s):  
Grace Y. Lin ◽  
Robert A. Lamb

ABSTRACT Infection of cells by many viruses affects the cell division cycle of the host cell to favor viral replication. We examined the ability of the paramyxovirus simian parainfluenza virus 5 (SV5) to affect cell cycle progression, and we found that SV5 slows the rate of proliferation of HeLa T4 cells. The SV5-infected cells had a delayed transition from G1 to S phase and prolonged progression through S phase, and some of the infected cells were arrested in G2 or M phase. The levels of p53 and p21CIP1were not increased in SV5-infected cells compared to mock-infected cells, suggesting that the changes in the cell cycle occur through a p53-independent mechanism. However, the phosphorylation of the retinoblastoma protein (pRB) was delayed and prolonged in SV5-infected cells. The changes in the cell cycle were also observed in cells expressing the SV5 V protein but not in the cells expressing the SV5 P protein or the V protein lacking its unique C terminus (VΔC). The unique C terminus of the V protein of SV5 was shown previously to interact with DDB1, which is the 127-kDa subunit of the multifunctional damage-specific DNA-binding protein (DDB) heterodimer. The coexpression of DDB1 with V can partially restore the changes in the cell cycle caused by expression of the V protein.


1993 ◽  
Vol 13 (9) ◽  
pp. 5829-5842
Author(s):  
P Zheng ◽  
D S Fay ◽  
J Burton ◽  
H Xiao ◽  
J L Pinkham ◽  
...  

SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document