scholarly journals Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by epidermal growth factor.

1996 ◽  
Vol 16 (1) ◽  
pp. 369-375 ◽  
Author(s):  
D W Leaman ◽  
S Pisharody ◽  
T W Flickinger ◽  
M A Commane ◽  
J Schlessinger ◽  
...  

The tyrosine kinase JAK1 and the transcription factors STAT1 and STAT3 are phosphorylated in response to epidermal growth factor (EGF) and other growth factors. We have used EGF receptor-transfected cell lines defective in individual JAKs to assess the roles of these kinases in STAT activation and signal transduction in response to EGF. Although JAK1 is phosphorylated in response to EGF, it is not required for STAT activation or for induction of the c-fos gene. STAT activation in JAK2- and TYK2-defective cells is also normal, and the tyrosine phosphorylation of these two kinases does not increase upon EGF stimulation in wild-type or JAK1-negative cells. In cells transfected with a kinase-negative mutant EGF receptor, there is no STAT activation in response to EGF and c-fos is not induced, showing that the kinase activity of the receptor is required, directly or indirectly, for these two responses. The data do not support a role for any of the three JAK family members tested in STAT activation and are consistent with a JAK-independent pathway in which the intrinsic kinase domain of the EGF receptor is crucial. Furthermore, data from transient transfection experiments in HeLa cells, using c-fos promoters lacking the STAT regulatory element c-sis-inducible element, indicate that this element may play only a minor role in the induction of c-fos by EGF in these cells.

1989 ◽  
Vol 9 (2) ◽  
pp. 671-677 ◽  
Author(s):  
A Basu ◽  
M Raghunath ◽  
S Bishayee ◽  
M Das

The tyrosine kinase activity of the epidermal growth factor (EGF) receptor is regulated by a truncated receptor of 100 kilodaltons (kDa) that contains the EGF-binding site but not the kinase domain. The inhibition of kinase is not due to competition for available EGF or for the kinase substrate-binding site. Chemical cross-linking studies suggest that the 100-kDa receptor may form a heterodimer with the intact EGF receptor. Structurally related receptor kinases, such as the platelet-derived growth factor receptor, the insulin receptor, and the Neu receptor, were not inhibited by the 100-kDa receptor. The results indicate that (i) the inhibition was specific for the EGF receptor, (ii) the kinase domain had little or no role in determining target specificity, and (iii) the regulation of kinase may be due to a specific interaction of the 100-kDa receptor with the ligand-binding domain of the EGF receptor kinase.


1990 ◽  
Vol 10 (2) ◽  
pp. 435-441
Author(s):  
B Margolis ◽  
F Bellot ◽  
A M Honegger ◽  
A Ullrich ◽  
J Schlessinger ◽  
...  

Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation.


1990 ◽  
Vol 10 (2) ◽  
pp. 435-441 ◽  
Author(s):  
B Margolis ◽  
F Bellot ◽  
A M Honegger ◽  
A Ullrich ◽  
J Schlessinger ◽  
...  

Epidermal growth factor (EGF) treatment of NIH 3T3 cells transfected with wild-type EGF receptor induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma). The EGF receptor and PLC-gamma were found to be physically associated such that antibodies directed against PLC-gamma or the EGF receptor coimmunoprecipitated both proteins. The association between PLC-gamma and wild-type EGF receptor was dependent on the concentration of EGF, but EGF did not enhance the association between PLC-gamma and a kinase-negative mutant of the EGF receptor. Oligomerization of the EGF receptor was not sufficient to induce association of the EGF receptor with PLC-gamma, since the kinase-negative mutant receptor underwent normal dimerization in response to EGF yet did not associate with PLC-gamma. The form of PLC-gamma associated with the EGF receptor appeared to be primarily the non-tyrosine-phosphorylated form. It is concluded that the kinase activity of the EGF receptor is essential for association of PLC-gamma with the EGF receptor, possibly by stimulating receptor autophosphorylation.


1989 ◽  
Vol 9 (2) ◽  
pp. 671-677
Author(s):  
A Basu ◽  
M Raghunath ◽  
S Bishayee ◽  
M Das

The tyrosine kinase activity of the epidermal growth factor (EGF) receptor is regulated by a truncated receptor of 100 kilodaltons (kDa) that contains the EGF-binding site but not the kinase domain. The inhibition of kinase is not due to competition for available EGF or for the kinase substrate-binding site. Chemical cross-linking studies suggest that the 100-kDa receptor may form a heterodimer with the intact EGF receptor. Structurally related receptor kinases, such as the platelet-derived growth factor receptor, the insulin receptor, and the Neu receptor, were not inhibited by the 100-kDa receptor. The results indicate that (i) the inhibition was specific for the EGF receptor, (ii) the kinase domain had little or no role in determining target specificity, and (iii) the regulation of kinase may be due to a specific interaction of the 100-kDa receptor with the ligand-binding domain of the EGF receptor kinase.


1991 ◽  
Vol 11 (2) ◽  
pp. 913-919 ◽  
Author(s):  
H App ◽  
R Hazan ◽  
A Zilberstein ◽  
A Ullrich ◽  
J Schlessinger ◽  
...  

Raf-1 serine- and threonine-specific protein kinase is transiently activated in cells expressing the epidermal growth factor (EGF) receptor upon treatment with EGF. The stimulated EGF receptor coimmunoprecipitates with Raf-1 kinase and mediates protein kinase C-independent phosphorylation of Raf-1 on serine residues. Hyperphosphorylated Raf-1 has lower mobility on sodium dodecyl sulfate gels and has sixfold-increased activity in immunocomplex kinase assay with histone H1 or Raf-1 sequence-derived peptide as a substrate. Raf-1 activation requires kinase-active EGF receptor; a point mutant lacking tyrosine kinase activity in inactive in Raf-1 coupling and association. It is noteworthy that tyrosine phosphorylation of c-Raf-1 induced by EGF was not detected in these cells. These observations suggest that Raf-1 kinase may act as an important downstream effector of EGF signal transduction.


2002 ◽  
Vol 13 (11) ◽  
pp. 3976-3988 ◽  
Author(s):  
Jung Min Han ◽  
Yong Kim ◽  
Jun Sung Lee ◽  
Chang Sup Lee ◽  
Byoung Dae Lee ◽  
...  

Phospholipase D (PLD) has been suggested to mediate epidermal growth factor (EGF) signaling. However, the molecular mechanism of EGF-induced PLD activation has not yet been elucidated. We investigated the importance of the phosphorylation and compartmentalization of PLD1 in EGF signaling. EGF treatment of COS-7 cells transiently expressing PLD1 stimulated PLD1 activity and induced PLD1 phosphorylation. The EGF-induced phosphorylation of threonine147 was completely blocked and the activity of PLD1 attenuated by point mutations (S2A/T147A/S561A) of PLD1 phosphorylation sites. The expression of a dominant negative PKCα mutant by adenovirus-mediated gene transfer greatly inhibited the phosphorylation and activation of PLD1 induced by EGF in PLD1-transfected COS-7 cells. EGF-induced PLD1 phosphorylation occurred primarily in the caveolin-enriched membrane (CEM) fraction, and the kinetics of PLD1 phosphorylation in the CEM were strongly correlated with PLD1 phosphorylation in the total membrane. Interestingly, EGF-induced PLD1 phosphorylation and activation and the coimmunoprecipitation of PLD1 with caveolin-1 and the EGF receptor in the CEM were significantly attenuated in the palmitoylation-deficient C240S/C241S mutant, which did not localize to the CEM. Immunocytochemical analysis revealed that wild-type PLD1 colocalized with caveolin-1 and the EGF receptor and that phosphorylated PLD1 was localized exclusively in the plasma membrane, although some PLD1 was also detected in vesicular structures. Transfection of wild-type PLD1 but not of C240S/C241S mutant increased EGF-induced raf-1 translocation to the CEM and ERK phosphorylation. This study shows, for the first time, that EGF-induced PLD1 phosphorylation and activation occur in the CEM and that the correct localization of PLD1 to the CEM via palmitoylation is critical for EGF signaling.


1994 ◽  
Vol 14 (6) ◽  
pp. 3550-3558
Author(s):  
S P Soltoff ◽  
K L Carraway ◽  
S A Prigent ◽  
W G Gullick ◽  
L C Cantley

Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.


1991 ◽  
Vol 11 (5) ◽  
pp. 2697-2703 ◽  
Author(s):  
C A Faaland ◽  
F H Mermelstein ◽  
J Hayashi ◽  
J D Laskin

Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.


1998 ◽  
Vol 334 (1) ◽  
pp. 189-195 ◽  
Author(s):  
Hong-Hee KIM ◽  
Ulka VIJAPURKAR ◽  
Nathan J. HELLYER ◽  
Dolores BRAVO ◽  
John G. KOLAND

The role of protein tyrosine kinase activity in ErbB3-mediated signal transduction was investigated. ErbB3 was phosphorylated in vivo in response to either heregulin (HRG) in cells expressing both ErbB3 and ErbB2, or epidermal growth factor (EGF) in cells expressing both ErbB3 and EGF receptor. A recombinant receptor protein (ErbB3-K/M, in which K/M stands for Lys → Met amino acid substitution) containing an inactivating mutation in the putative ATP-binding site was also phosphorylated in response to HRG and EGF. Both the wild-type ErbB3 and mutant ErbB3-K/M proteins transduced signals to phosphatidylinositol 3-kinase, Shc and mitogen-activated protein kinases. Separate kinase-inactivating mutations in the EGF receptor and ErbB2 proteins abolished ErbB3 phosphorylation and signal transduction activated by EGF and HRG respectively. Hence the protein tyrosine kinase activity necessary for growth factor signalling via the ErbB3 protein seems to be provided by coexpressed EGF and ErbB2 receptor proteins.


1986 ◽  
Vol 103 (2) ◽  
pp. 333-342 ◽  
Author(s):  
U Murthy ◽  
M Basu ◽  
A Sen-Majumdar ◽  
M Das

This paper describes studies on the migratory behavior of epidermal growth factor (EGF) receptor kinase using antibodies that are specific for either the kinase domain or the extracellular domain of the receptor. Antiserum was raised to a 42,000-D subfragment of EGF receptor, which was shown earlier to carry the kinase catalytic site but not the EGF-binding site. Another antiserum was raised to the pure intact 170,000-D EGF receptor. The specificities of these antibodies were established by immunoprecipitation and immunoblotting experiments. The domain specificity was examined by indirect immunofluorescent staining of fixed cells. The anti-42-kD peptide antibody could bind specifically to EGF receptors of both human and murine origin and was found to be directed to the cytoplasmic part of the molecule. It did not bind to EGF receptor-negative cells, which contained other types of tyrosine kinases. The antibodies raised against the intact receptor recognized only EGF receptor-specific epitopes and were directed to the extracellular part of the molecule. The anti-receptor antibodies described above were used to visualize the cyclic locomotory behavior of EGF receptor kinase under various conditions of EGF stimulation and withdrawal. The receptor was examined in fixed and permeabilized cells by indirect immunofluorescent staining. The results demonstrate the following: (a) the receptor kinase domain migrates to the perinuclear region upon challenge with EGF; (b) both extracellular and cytoplasmic domains of the receptor are involved in migration as a unit; (c) withdrawal of EGF results in rapid recycling of the perinuclear receptors to the plasma membrane; (d) this return to the cell surface is inhibited by methylamine, chloroquine, and monensin; and (e) neither the internal migration nor the recycling process is blocked by inhibitors of protein biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document