scholarly journals The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription.

1996 ◽  
Vol 16 (4) ◽  
pp. 1349-1355 ◽  
Author(s):  
S W Hiebert ◽  
W Sun ◽  
J N Davis ◽  
T Golub ◽  
S Shurtleff ◽  
...  

The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal domain of AML-1B that is required for transactivation of the T-cell receptor beta enhancer, it fails to activate transcription but rather inhibits the basal activity of this enhancer. TEL/AML-1B efficiently interferes with AML-1B dependent transactivation of the T-cell receptor beta enhancer, and coexpression of wild-type TEL does not reverse this inhibition. The N-terminal TEL helix-loop-helix domain is essential for TEL/AML-1B-mediated repression. Thus, the t(12;21) fusion protein dominantly interferes with AML-1B-dependent transcription, suggesting that the inhibition of expression of AML-1 genes is critical for B-cell leukemogenesis.

1994 ◽  
Vol 14 (6) ◽  
pp. 4286-4294
Author(s):  
A J Henderson ◽  
S McDougall ◽  
J Leiden ◽  
K L Calame

Three high-affinity binding sites for the GATA family of transcriptional regulators have been identified within the T-cell receptor beta-chain (TCR beta) transcriptional enhancer, and their functional significance has been determined in an effort to understand the T-cell specificity of the enhancer more fully. One site, TE4, is important for activity of the enhancer in T cells. Neither site TE1 nor site TE2 can functionally replace a mutated TE4 site in T cells; however, the same protein, probably GATA-3, binds all three sites, as judged by electrophoretic mobility shift, oligonucleotide competition, and proteolytic clipping assays. These data suggest that additional proteins are critical for the ability of GATA-3 to activate the TCR beta enhancer. In fibroblasts, the GATA sequence at site TE1 appears to bind a negative regulator. Since this is not true in B cells, B cells and fibroblasts appear to have different mechanisms for negative regulation of the TCR beta enhancer.


1994 ◽  
Vol 14 (6) ◽  
pp. 4286-4294 ◽  
Author(s):  
A J Henderson ◽  
S McDougall ◽  
J Leiden ◽  
K L Calame

Three high-affinity binding sites for the GATA family of transcriptional regulators have been identified within the T-cell receptor beta-chain (TCR beta) transcriptional enhancer, and their functional significance has been determined in an effort to understand the T-cell specificity of the enhancer more fully. One site, TE4, is important for activity of the enhancer in T cells. Neither site TE1 nor site TE2 can functionally replace a mutated TE4 site in T cells; however, the same protein, probably GATA-3, binds all three sites, as judged by electrophoretic mobility shift, oligonucleotide competition, and proteolytic clipping assays. These data suggest that additional proteins are critical for the ability of GATA-3 to activate the TCR beta enhancer. In fibroblasts, the GATA sequence at site TE1 appears to bind a negative regulator. Since this is not true in B cells, B cells and fibroblasts appear to have different mechanisms for negative regulation of the TCR beta enhancer.


2021 ◽  
Author(s):  
Aviv Omer ◽  
Ayelet Peres ◽  
Oscar L Rodrigues ◽  
Corey T Watson ◽  
William Lees ◽  
...  

T and B cell repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance. The chromosomal loci encoding for the variable regions of T and B cell receptors (TCRs and BCRs, respectively) are challenging to decipher due to repetitive elements and undocumented structural variants. To confront this challenge, AIRR-seq-based methods have been developed recently for B cells, enabling genotype and haplotype inference and discovery of undocumented alleles. Applying these methods to AIRR-seq data reveals a plethora of undocumented genomic variations. However, this approach relies on complete coverage of the receptors' variable regions, and most T cell studies sequence only a small fraction of the variable region. Here, we adapted BCR inference methods to full and partial TCR sequences, and identified 38 undocumented polymorphisms in TRBV, 15 of them were also observed in genomic data assemblies. Further, we identified 31 undocumented 5' UTR sequences. A subset of these inferences was also observed using independent genomic approaches. We found the two documented TRBD2 alleles to be equally abundant in the population, and show that the single nucleotide that differentiates them is strongly associated with dramatic changes in the expressed repertoire. Our findings expand the knowledge of genomic variation in the TRB (T Cell Receptor Beta) locus and provide a basis for annotation of TCR repertoires for future basic and clinical studies.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 571
Author(s):  
Giovanna Linguiti ◽  
Sofia Kossida ◽  
Ciro Leonardo Pierri ◽  
Joumana Jabado-Michaloud ◽  
Geraldine Folch ◽  
...  

The bottlenose dolphin (Tursiops truncatus) belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T. truncatus T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3′ end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes. We have analyzed the relevant mature transcripts from two subjects. The simultaneous availability of rearranged T cell receptor α (TRA) and TRB cDNA from the peripheral blood of one of the two specimens, and the human/dolphin amino acids multi-sequence alignments, allowed us to calculate the most likely interactions at the protein interface between the alpha/beta heterodimer in complex with major histocompatibility class I (MH1) protein. Interacting amino acids located in the complementarity-determining region according to IMGT numbering (CDR-IMGT) of the dolphin variable V-alpha and beta domains were identified. According to comparative modelization, the atom pair contact sites analysis between the human MH1 grove (G) domains and the T cell receptor (TR) V domains confirms conservation of the structure of the dolphin TR/pMH.


2009 ◽  
Vol 39 (5) ◽  
pp. 412-417 ◽  
Author(s):  
Fortunato Morabito ◽  
Angela Tassinari ◽  
Vincenzo Callea ◽  
Maura Brugiatelli ◽  
Maria Teresa Fierro ◽  
...  

1989 ◽  
Vol 15 (3) ◽  
pp. 239-247 ◽  
Author(s):  
A. S. Krajewski ◽  
M. W. Myskow ◽  
D. M. Salter ◽  
D. S. Cunningham ◽  
E. F. Ramage

1989 ◽  
Vol 26 (7) ◽  
pp. 431-433 ◽  
Author(s):  
S A McMillan ◽  
A J Hill ◽  
C A Graham ◽  
N C Nevin ◽  
A C Fay

Sign in / Sign up

Export Citation Format

Share Document