beta enhancer
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

1996 ◽  
Vol 16 (4) ◽  
pp. 1349-1355 ◽  
Author(s):  
S W Hiebert ◽  
W Sun ◽  
J N Davis ◽  
T Golub ◽  
S Shurtleff ◽  
...  

The t(12;21) translocation is present in up to 30% of childhood B-cell acute lymphoblastic and fuses a potential dimerization motif from the ets-related factor TEL to the N terminus of AML1. The t(12;21) translocation encodes a 93-kDa fusion protein that localizes to a high-salt- and detergent-resistant nuclear compartment. This protein binds the enhancer core motif, TGTGGT, and interacts with the AML-1-binding protein, core-binding factor beta. Although TEL/AML-1B retains the C-terminal domain of AML-1B that is required for transactivation of the T-cell receptor beta enhancer, it fails to activate transcription but rather inhibits the basal activity of this enhancer. TEL/AML-1B efficiently interferes with AML-1B dependent transactivation of the T-cell receptor beta enhancer, and coexpression of wild-type TEL does not reverse this inhibition. The N-terminal TEL helix-loop-helix domain is essential for TEL/AML-1B-mediated repression. Thus, the t(12;21) fusion protein dominantly interferes with AML-1B-dependent transcription, suggesting that the inhibition of expression of AML-1 genes is critical for B-cell leukemogenesis.


1995 ◽  
Vol 15 (4) ◽  
pp. 1974-1982 ◽  
Author(s):  
S Meyers ◽  
N Lenny ◽  
S W Hiebert

The AML-1/CBF beta transcription factor complex is targeted by both the t(8;21) and the inv(16) chromosomal alterations, which are frequently observed in acute myelogenous leukemia. AML-1 is a site-specific DNA-binding protein that recognizes the enhancer core motif TGTGGT. The t(8;21) translocation fuses the first 177 amino acids of AML-1 to MTG8 (also known as ETO), generating a chimeric protein that retains the DNA-binding domain of AML-1. Analysis of endogenous AML-1 DNA-binding complexes suggested the presence of at least two AML-1 isoforms. Accordingly, we screened a human B-cell cDNA library and isolated a larger, potentially alternatively spliced, form of AML1, termed AML1B. AML-1B is a protein of 53 kDa that binds to a consensus AML-1-binding site and complexes with CBF beta. Subcellular fractionation experiments demonstrated that both AML-1 and AML-1/ETO are efficiently extracted from the nucleus under ionic conditions but that AML-1B is localized to a salt-resistant nuclear compartment. Analysis of the transcriptional activities of AML-1, AML-1B, and AML-1/ETO demonstrated that only AML-1B activates transcription from the T-cell receptor beta enhancer. Mixing experiments indicated that AML-1/ETO can efficiently block AML-1B-dependent transcriptional activation, suggesting that the t(8;21) translocation creates a dominant interfering protein.


1995 ◽  
Vol 15 (1) ◽  
pp. 152-164 ◽  
Author(s):  
D Thanos ◽  
T Maniatis

We have carried out experiments to determine which members of the rel family of transcription factors are involved in virus induction of the beta interferon (IFN-beta) gene. First, we examined the inducibility of artificial DNA binding sites that preferentially interact with different homo- or heterodimeric combinations of rel proteins in vitro. We found that only those sites capable of binding the p50/p65 heterodimer are virus inducible. Second, we analyzed a series of mutant rel DNA-binding sites in the context of the intact IFN-beta promoter. We found a correlation between (i) sites capable of binding both the p50/p65 heterodimer and the high-mobility-group protein HMG I(Y) and (ii) virus inducibility. Third, cotransfection of the IFN-beta gene enhancer/promoter with plasmids capable of expressing several different rel proteins revealed that only the combination of p50 and p65 efficiently activated transcription. Finally, we have used antibodies directed against different rel proteins to show that virus-inducible protein-DNA complexes assembled on the IFN-beta enhancer in vitro contain both p50 and p65. We conclude that the p50/p65 heterodimer is responsible for the NF-kappa B-dependent activation of the IFN-beta gene promoter in response to virus infection.


1994 ◽  
Vol 14 (6) ◽  
pp. 4286-4294
Author(s):  
A J Henderson ◽  
S McDougall ◽  
J Leiden ◽  
K L Calame

Three high-affinity binding sites for the GATA family of transcriptional regulators have been identified within the T-cell receptor beta-chain (TCR beta) transcriptional enhancer, and their functional significance has been determined in an effort to understand the T-cell specificity of the enhancer more fully. One site, TE4, is important for activity of the enhancer in T cells. Neither site TE1 nor site TE2 can functionally replace a mutated TE4 site in T cells; however, the same protein, probably GATA-3, binds all three sites, as judged by electrophoretic mobility shift, oligonucleotide competition, and proteolytic clipping assays. These data suggest that additional proteins are critical for the ability of GATA-3 to activate the TCR beta enhancer. In fibroblasts, the GATA sequence at site TE1 appears to bind a negative regulator. Since this is not true in B cells, B cells and fibroblasts appear to have different mechanisms for negative regulation of the TCR beta enhancer.


1994 ◽  
Vol 14 (6) ◽  
pp. 4286-4294 ◽  
Author(s):  
A J Henderson ◽  
S McDougall ◽  
J Leiden ◽  
K L Calame

Three high-affinity binding sites for the GATA family of transcriptional regulators have been identified within the T-cell receptor beta-chain (TCR beta) transcriptional enhancer, and their functional significance has been determined in an effort to understand the T-cell specificity of the enhancer more fully. One site, TE4, is important for activity of the enhancer in T cells. Neither site TE1 nor site TE2 can functionally replace a mutated TE4 site in T cells; however, the same protein, probably GATA-3, binds all three sites, as judged by electrophoretic mobility shift, oligonucleotide competition, and proteolytic clipping assays. These data suggest that additional proteins are critical for the ability of GATA-3 to activate the TCR beta enhancer. In fibroblasts, the GATA sequence at site TE1 appears to bind a negative regulator. Since this is not true in B cells, B cells and fibroblasts appear to have different mechanisms for negative regulation of the TCR beta enhancer.


1993 ◽  
Vol 13 (9) ◽  
pp. 5450-5460 ◽  
Author(s):  
H Messier ◽  
H Brickner ◽  
J Gaikwad ◽  
A Fotedar

POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.


1993 ◽  
Vol 13 (9) ◽  
pp. 5450-5460
Author(s):  
H Messier ◽  
H Brickner ◽  
J Gaikwad ◽  
A Fotedar

POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.


1990 ◽  
Vol 10 (10) ◽  
pp. 5027-5035
Author(s):  
J Takeda ◽  
A Cheng ◽  
F Mauxion ◽  
C A Nelson ◽  
R D Newberry ◽  
...  

The minimal T-cell receptor (TCR) beta-chain (TCR beta) enhancer has been identified by transfection into lymphoid cells. The minimal enhancer was active in T cells and in some B-lineage cells. When a larger fragment containing the minimal enhancer was used, its activity was apparent only in T cells. Studies with phytohemagglutinin and 4 beta-phorbol-12,13-dibutyrate revealed that the enhancer activity was increased by these agents. By a combination of DNase I footprinting, gel mobility shift assay, and methylation interference analysis, seven different motifs were identified within the minimal enhancer. Furthermore, competition experiments showed that some of these elements bound identical or similar factors that are known to bind to the TCR V beta promoter decamer or to the immunoglobulin enhancer kappa E2 or muEBP-E motif. These shared motifs may be important in the differential gene activity among the different lymphoid subsets.


1990 ◽  
Vol 10 (10) ◽  
pp. 5027-5035 ◽  
Author(s):  
J Takeda ◽  
A Cheng ◽  
F Mauxion ◽  
C A Nelson ◽  
R D Newberry ◽  
...  

The minimal T-cell receptor (TCR) beta-chain (TCR beta) enhancer has been identified by transfection into lymphoid cells. The minimal enhancer was active in T cells and in some B-lineage cells. When a larger fragment containing the minimal enhancer was used, its activity was apparent only in T cells. Studies with phytohemagglutinin and 4 beta-phorbol-12,13-dibutyrate revealed that the enhancer activity was increased by these agents. By a combination of DNase I footprinting, gel mobility shift assay, and methylation interference analysis, seven different motifs were identified within the minimal enhancer. Furthermore, competition experiments showed that some of these elements bound identical or similar factors that are known to bind to the TCR V beta promoter decamer or to the immunoglobulin enhancer kappa E2 or muEBP-E motif. These shared motifs may be important in the differential gene activity among the different lymphoid subsets.


1988 ◽  
Vol 8 (11) ◽  
pp. 5000-5015
Author(s):  
W J Muller ◽  
D Dufort ◽  
J A Hassell

The polyomavirus origin for DNA replication comprises at least two essential, but functionally distinct, cis-acting components. One of these, the origin core, is required only for DNA replication. It includes binding sites for large T antigen and the origin of bidirectional DNA replication. The other component is required for both transcription and DNA replication and is represented by two functionally redundant regions, alpha and beta, which are elements of the polyomavirus enhancer. Whereas either enhancer element will activate DNA replication, both enhancer elements are required to constitute a functional enhancer of transcription. To identify the sequences that make up each enhancer element, we have subjected them separately to in vitro mutagenesis and measured their capacity to activate replication in cis of the origin core in MOP-8 cells, which provide all trans-acting replicative functions including large T antigen. The results reveal that the beta enhancer element is composed of three subelements, two auxiliary subelements, and a core subelement. The core subelement independently activated DNA replication, albeit poorly. The auxiliary subelements, which were inactive on their own, acted synergistically with the core subelement to increase its activity. Interestingly, dimers of the beta core subelement functioned as well as the combination of a beta auxiliary subelement and a core subelement, suggesting that the subelements are functionally equivalent. The alpha enhancer element is organized similarly; it too comprises an auxiliary subelement and a core subelement. These results lead us to suggest that the polyomavirus enhancer comprises two levels of organization; two or more enhancer elements form an enhancer, and two or more subelements make up an enhancer element. The subelements share few sequences and serve as binding sites for distinct cellular factors. It appears, therefore, that a number of different cellular proteins function cooperatively to activate polyomavirus DNA replication by a common mechanism.


Sign in / Sign up

Export Citation Format

Share Document