scholarly journals Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae.

1996 ◽  
Vol 16 (6) ◽  
pp. 2838-2847 ◽  
Author(s):  
M A Basrai ◽  
J Kingsbury ◽  
D Koshland ◽  
F Spencer ◽  
P Hieter

A chromosome transmission fidelity (ctf) mutant, s138, of Saccharomyces cerevisiae was identified by its centromere (CEN) transcriptional readthrough phenotype, suggesting perturbed kinetochore integrity in vivo. The gene complementing the s138 mutation was found to be identical to the S. cerevisiae SPT4 gene. The s138 mutation is a missense mutation in the second of four conserved cysteine residues positioned similarly to those of zinc finger proteins, and we henceforth refer to the mutation of spt4-138. Both spt4-138 and spt4 delta strains missegregate a chromosome fragment at the permissive temperature, are temperature sensitive for growth at 37 degrees C, and upon a shift to the nonpermissive temperature show an accumulation of large budded cells, each with a nucleus. Previous studies suggest that Spt4p functions in a complex with Spt5p and Spt6p, and we determined that spt6-140 also causes missegregation of a chromosome fragment. Double mutants carrying spt4 delta 2::HIS3 and kinetochore mutation ndc10-42 or ctf13-30 show a synthetic conditional phenotype. Both spt4-138 and spt4 delta strains exhibit synergistic chromosome instability in combination with CEN DNA mutations and show in vitro defects in microtubule binding to minichromosomes. These results indicate that Spt4p plays a role in chromosome segregation. The results of in vivo genetic interactions with mutations in kinetochore proteins and CEN DNA and of in vitro biochemical assays suggest that Spt4p is important for kinetochore function.

2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


1998 ◽  
Vol 18 (4) ◽  
pp. 2360-2370 ◽  
Author(s):  
Denis L. J. Lafontaine ◽  
Thomas Preiss ◽  
David Tollervey

ABSTRACT One of the few rRNA modifications conserved between bacteria and eukaryotes is the base dimethylation present at the 3′ end of the small subunit rRNA. In the yeast Saccharomyces cerevisiae, this modification is carried out by Dim1p. We previously reported that genetic depletion of Dim1p not only blocked this modification but also strongly inhibited the pre-rRNA processing steps that lead to the synthesis of 18S rRNA. This prevented the formation of mature but unmodified 18S rRNA. The processing steps inhibited were nucleolar, and consistent with this, Dim1p was shown to localize mostly to this cellular compartment. dim1-2 was isolated from a library of conditionally lethal alleles of DIM1. In dim1-2strains, pre-rRNA processing was not affected at the permissive temperature for growth, but dimethylation was blocked, leading to strong accumulation of nondimethylated 18S rRNA. This demonstrates that the enzymatic function of Dim1p in dimethylation can be separated from its involvement in pre-rRNA processing. The growth rate ofdim1-2 strains was not affected, showing the dimethylation to be dispensable in vivo. Extracts of dim1-2 strains, however, were incompetent for translation in vitro. This suggests that dimethylation is required under the suboptimal in vitro conditions but only fine-tunes ribosomal function in vivo. Unexpectedly, when transcription of pre-rRNA was driven by a polymerase II PGKpromoter, its processing became insensitive to temperature-sensitive mutations in DIM1 or to depletion of Dim1p. This observation, which demonstrates that Dim1p is not directly required for pre-rRNA processing reactions, is consistent with the inhibition of pre-rRNA processing by an active repression system in the absence of Dim1p.


1978 ◽  
Vol 56 (6) ◽  
pp. 444-451 ◽  
Author(s):  
Jerome Humbert ◽  
Rose Sheinin

The in vitro DNA synthesis has been observed in whole cell lysates and in cytosol and nuclear fractions of wild-type (WT-4) mouse L-cells and ts A1S9 cells which exhibit temperature-sensitive (ts) DNA replication in vivo. The product, labelled with substrate 3H-labelled TTP, is resistant to alkali and has the buoyant density (1.709 g/cm3) expected for normal mouse DNA. Pulse-chase studies, in which newly made, single-stranded DNA was analyzed by velocity sedimentation in alkaline sucrose density gradients, revealed that in vitro DNA synthesis proceeds by a discontinuous mechanism. Approximately half of the DNA made in a 30-s pulse sedimented at 3–8S; the rest was very heterogeneous with S values between [Formula: see text] and 30S. After incubation for up to 300 s, a majority of the newly made DNA (>85%) sedimented as the larger, heterogeneous material, with some cosedimenting with chromosomal size DNA.The ts DNA synthesis phenotype of ts A1S9 cells is expressed in vitro. Thus, the activity of extracts of ts cells incubated at the nonpermissive (38.5 °C) temperature was commensurate with the in vivo activity. Restriction of the ts phenotype to DNA synthesis is evident in vitro since the RNA synthetic activity of lysates of temperature-inactivated ts A1S9 cells was equivalent to that of extracts obtained from cells grown at the permissive temperature (33.5 °C). The DNA synthetic activity of nuclei from WT-4 or ts A1S9 cells grown at 33.5 °C plus homologous cytosol is equivalent to that of the whole lysate. In contrast, such cytosol preparations give little, if any, enhancement of the activity of nuclei from ts A1S9 cells incubated at 38.5 °C for 16 h. The cytosol of such temperature-inactivated cells, which are almost fully effective with nuclei of control cells, produce little or no enhancement of DNA synthesis by homologous nuclei.


2009 ◽  
Vol 422 (3) ◽  
pp. 483-492 ◽  
Author(s):  
Zhen Zhao ◽  
Wenchen Su ◽  
Sheng Yuan ◽  
Ying Huang

Although tRNase Z from various organisms was shown to process nuclear tRNA 3′ ends in vitro, only a very limited number of studies have reported its in vivo biological functions. tRNase Z is present in a short form, tRNase ZS, and a long form, tRNase ZL. Unlike Saccharomyces cerevisiae, which contains one tRNase ZL gene (scTRZ1) and humans, which contain one tRNase ZL encoded by the prostate-cancer susceptibility gene ELAC2 and one tRNase ZS, Schizosaccharomyces pombe contains two tRNase ZL genes, designated sptrz1+ and sptrz2+. We report that both sptrz1+ and sptrz2+ are essential for growth. Moreover, sptrz1+ is required for cell viability in the absence of Sla1p, which is thought to be required for endonuclease-mediated maturation of pre-tRNA 3′ ends in yeast. Both scTRZ1 and ELAC2 can complement a temperature-sensitive allele of sptrz1+, sptrz1–1, but not the sptrz1 null mutant, indicating that despite exhibiting species specificity, tRNase ZLs are functionally conserved among S. cerevisiae, S. pombe and humans. Overexpression of sptrz1+, scTRZ1 and ELAC2 can increase suppression of the UGA nonsense mutation ade6–704 through facilitating 3′ end processing of the defective suppressor tRNA that mediates suppression. Our findings reveal that 3′ end processing is a limiting step for defective tRNA maturation and demonstrate that overexpression of sptrz1+, scTRZ1 and ELAC2 can promote defective tRNA 3′ processing in vivo. Our results also support the notion that yeast tRNase ZL is absolutely required for 3′ end processing of at least a few pre-tRNAs even in the absence of Sla1p.


1993 ◽  
Vol 13 (2) ◽  
pp. 1212-1221 ◽  
Author(s):  
R S Sikorski ◽  
W A Michaud ◽  
P Hieter

CDC23 is required in Saccharomyces cerevisiae for cell cycle progression through the G2/M transition. The CDC23 gene product contains tandem, imperfect repeats, termed tetratricopeptide repeats, (TPR) units common to a protein family that includes several other nuclear division CDC genes. In this report we have used mutagenesis to probe the functional significance of the TPR units within CDC23. Analysis of truncated derivatives indicates that the TPR block of CDC23 is necessary for the function or stability of the polypeptide. In-frame deletion of a single TPR unit within the repeat block proved sufficient to inactivate CDC23 in vivo, though this allele could rescue the temperature-sensitive defect of a cdc23 point mutant by intragenic complementation. By both in vitro and in vivo mutagenesis techniques, 17 thermolabile cdc23 alleles were produced and examined. Fourteen alleles contained single amino acid changes that were found to cluster within two distinct mutable domains, one of which encompasses the most canonical TPR unit found in CDC23. In addition, we have characterized CDC23 as a 62-kDa protein (p62cdc23) that is localized to the yeast nucleus. Our mutagenesis results suggest that TPR blocks form an essential domain within members of the TPR family.


1991 ◽  
Vol 11 (7) ◽  
pp. 3463-3471 ◽  
Author(s):  
S R Schmid ◽  
P Linder

The eukaryotic translation initiation factor 4A (eIF-4A) possesses an in vitro helicase activity that allows the unwinding of double-stranded RNA. This activity is dependent on ATP hydrolysis and the presence of another translation initiation factor, eIF-4B. These two initiation factors are thought to unwind mRNA secondary structures in preparation for ribosome binding and initiation of translation. To further characterize the function of eIF-4A in cellular translation and its interaction with other elements of the translation machinery, we have isolated mutations in the TIF1 and TIF2 genes encoding eIF-4A in Saccharomyces cerevisiae. We show that three highly conserved domains of the D-E-A-D protein family, encoding eIF-4A and other RNA helicases, are essential for protein function. Only in rare cases could we make a conservative substitution without affecting cell growth. The mutants show a clear correlation between their growth and in vivo translation rates. One mutation that results in a temperature-sensitive phenotype reveals an immediate decrease in translation activity following a shift to the nonpermissive temperature. These in vivo results confirm previous in vitro data demonstrating an absolute dependence of translation on the TIF1 and TIF2 gene products.


1991 ◽  
Vol 11 (1) ◽  
pp. 213-217 ◽  
Author(s):  
R Karlsson ◽  
P Aspenström ◽  
A S Byström

Recently it was demonstrated that beta-actin can be produced in Saccharomyces cerevisiae by using the expression plasmid pY beta actin (R. Karlsson, Gene 68:249-258, 1988), and several site-specific mutants are now being produced in a protein engineering study. To establish a system with which recombinant actin mutants can be tested in vivo and thus enable a correlation to be made with functional effects observed in vitro, a yeast strain lacking endogenous yeast actin and expressing exclusively beta-actin was constructed. This strain is viable but has an altered morphology and a slow-growth phenotype and is temperature sensitive to the point of lethality at 37 degrees C.


Sign in / Sign up

Export Citation Format

Share Document