scholarly journals Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type I and type II activin receptors and human erythroid differentiation.

1997 ◽  
Vol 17 (3) ◽  
pp. 1682-1691 ◽  
Author(s):  
J J Lebrun ◽  
W W Vale

Activins and inhibins belong to the transforming growth factor beta (TGF-beta)-like superfamily and exert their effects on a broad range of cellular targets by modulating cell differentiation and proliferation. Members of this family interact with two structurally related classes of receptors (type I and type II), both containing a serine/threonine kinase domain. When expressed alone, the type II but not the type I activin receptor can bind activin. However, the presence of a type I receptor is required for signaling. For TGF-beta1, ligand binding to the type II receptor results in the recruitment and transphosphorylation of the type I receptor. Transient overexpression of the two types of activin receptor results in ligand-independent receptor heteromerization and activation. Nevertheless, activin addition to the transfected cells increased complex formation between the two receptors, suggesting a mechanism of action similar to that observed for the TGF-beta receptor. In the present study, we generated a stable cell line, overexpressing the two types of activin receptor upon induction, in the human erythroleukemia cell line K562. We demonstrate here that activin specifically induces heteromer formation between the type I and type II receptors in a time-dependent manner. Using this stable line, we analyzed the effects of activin and inhibin on human erythroid differentiation. Our results indicate that activin signal transduction mediated through its type I and type II receptors results in an increase in the hemoglobin content of the cells and limits their proliferation. Finally, using cell lines that can be induced to overexpress ActRII and ActRIB or ActRIB only, we show that the inhibin antagonistic effects on activin-induced biological responses are mediated through a competition for the type II activin receptor but also require the presence of an inhibin-specific binding component.

1994 ◽  
Vol 14 (2) ◽  
pp. 944-950 ◽  
Author(s):  
J L Wrana ◽  
H Tran ◽  
L Attisano ◽  
K Arora ◽  
S R Childs ◽  
...  

A transmembrane protein serine/threonine kinase, Atr-I, that is structurally related to receptors for members of the transforming growth factor-beta (TGF-beta) family has been cloned from Drosophila melanogaster. The spacing of extracellular cysteines and the cytoplasmic domain of Atr-I resemble most closely those of the recently described mammalian type I receptors for TGF-beta and activin. When expressed alone in test cells, Atr-I is unable to bind TGF-beta, activin, or bone morphogenetic protein 2. However, Atr-I binds activin efficiently when coexpressed with the distantly related Drosophila activin receptor Atr-II, with which it forms a heteromeric complex. Atr-I can also bind activin in concert with mammalian activin type II receptors. Two alternative forms of Atr-I have been identified that differ in an ectodomain region encompassing the cysteine box motif characteristic of receptors in this family. Comparison of Atr-I with other type I receptors reveals the presence of a characteristic 30-amino-acid domain immediately upstream of the kinase region in all these receptors. This domain, of unknown function, contains a repeated Gly-Ser sequence and is therefore referred to as the GS domain. Maternal Atr-I transcripts are abundant in the oocyte and widespread during embryo development and in the imaginal discs of the larva. The structural properties, binding specificity, and dependence on type II receptors define Atr-I as an activin type I receptor from D. melanogaster. These results indicate that the heteromeric kinase structure is a general feature of this receptor family.


1994 ◽  
Vol 14 (2) ◽  
pp. 944-950
Author(s):  
J L Wrana ◽  
H Tran ◽  
L Attisano ◽  
K Arora ◽  
S R Childs ◽  
...  

A transmembrane protein serine/threonine kinase, Atr-I, that is structurally related to receptors for members of the transforming growth factor-beta (TGF-beta) family has been cloned from Drosophila melanogaster. The spacing of extracellular cysteines and the cytoplasmic domain of Atr-I resemble most closely those of the recently described mammalian type I receptors for TGF-beta and activin. When expressed alone in test cells, Atr-I is unable to bind TGF-beta, activin, or bone morphogenetic protein 2. However, Atr-I binds activin efficiently when coexpressed with the distantly related Drosophila activin receptor Atr-II, with which it forms a heteromeric complex. Atr-I can also bind activin in concert with mammalian activin type II receptors. Two alternative forms of Atr-I have been identified that differ in an ectodomain region encompassing the cysteine box motif characteristic of receptors in this family. Comparison of Atr-I with other type I receptors reveals the presence of a characteristic 30-amino-acid domain immediately upstream of the kinase region in all these receptors. This domain, of unknown function, contains a repeated Gly-Ser sequence and is therefore referred to as the GS domain. Maternal Atr-I transcripts are abundant in the oocyte and widespread during embryo development and in the imaginal discs of the larva. The structural properties, binding specificity, and dependence on type II receptors define Atr-I as an activin type I receptor from D. melanogaster. These results indicate that the heteromeric kinase structure is a general feature of this receptor family.


2007 ◽  
Vol 195 (1) ◽  
pp. 95-103 ◽  
Author(s):  
Nina Renlund ◽  
Francis H O’Neill ◽  
LiHua Zhang ◽  
Yisrael Sidis ◽  
Jose Teixeira

Activin receptor-like kinase-2 (Alk2) has been shown to be a promiscuous type I receptor for the transforming growth factor β (TGFβ) family of growth and differentiation factors, such as activin, bone morphogenetic proteins, and Müllerian inhibiting substance (MIS). We have studied the putative role of Alk2 in activin signaling using MA-10 cells, a mouse transformed Leydig cell line, in which endogenous expression of cytochrome P450 c17 hydroxylase/C17–20 lyase mRNA is inhibited by both MIS and activin A. Overexpression of Alk2 in MA-10 cells inhibited the activation of the activin-responsive CAGA-luciferase reporter and, conversely, transfection of siRNA for Alk2 increased the response. In contrast, overexpression of the MIS type II receptor in MA-10 cells increased the activin-mediated induction of CAGA-luciferase approximately fivefold, which we hypothesized occurs by MIS type II receptor sequestering endogenous Alk2. Binding experiments with 125I-labeled activin show that the underlying mechanism of Alk2-mediated inhibition of activin signaling involves Alk2 blocking the access of activin to its type II receptor, which we show can bind Alk2 in the absence of ligand. These results show that the complement of other type I receptors in addition to the ligand-specific type I receptor can provide an important mechanism for modulating cell-specific responses to members of the TGFβ family.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3371-3379 ◽  
Author(s):  
Koki Kitamura ◽  
Shin-ichi Aota ◽  
Ruriko Sakamoto ◽  
Shun-Ichi Yoshikawa ◽  
Kenji Okazaki

Smad family proteins are essential for transforming growth factor β (TGF-β) signal mediation downstream of a heteromeric complex of the type I and type II receptor serine/threonine kinases. A distant family member, Smad7, is expressed in most mammalian tissues and cells and prevents TGF-β signaling. In this study, we examined the physiologic role of Smad7 in mediating the effects of activin, a member of the TGF-β superfamily of peptides that functions in a number of processes, including blood-cell development. We report here that Smad7 expression is specifically absent in particular hematopoietic cells that respond to activin by differentiating into the erythroid lineage and that ectopic production of Smad7 causes mouse erythroid leukemia (F5-5) cells to become resistant to activin induction of erythroid differentiation. When coexpressed with type I activin receptor ActR-I or ActR-IB in concert with type II receptor ActR-II, Smad7 efficiently reduced an early transcriptional response mediated by ActR-I but had only a minimal effect on the response mediated by ActR-IB. In the presence of Smad7, overexpression of an activated form of ActR-IB, but not of an activated form of ActR-I, induced F5-5 cells to differentiate. These results suggest that Smad7 selectively interferes with the ActR-I pathway in activin signal transduction. The findings also indicate the existence of a novel activity of Smad7 that inhibits erythroid differentiation by blocking intracellular signaling of activin.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3371-3379 ◽  
Author(s):  
Koki Kitamura ◽  
Shin-ichi Aota ◽  
Ruriko Sakamoto ◽  
Shun-Ichi Yoshikawa ◽  
Kenji Okazaki

Abstract Smad family proteins are essential for transforming growth factor β (TGF-β) signal mediation downstream of a heteromeric complex of the type I and type II receptor serine/threonine kinases. A distant family member, Smad7, is expressed in most mammalian tissues and cells and prevents TGF-β signaling. In this study, we examined the physiologic role of Smad7 in mediating the effects of activin, a member of the TGF-β superfamily of peptides that functions in a number of processes, including blood-cell development. We report here that Smad7 expression is specifically absent in particular hematopoietic cells that respond to activin by differentiating into the erythroid lineage and that ectopic production of Smad7 causes mouse erythroid leukemia (F5-5) cells to become resistant to activin induction of erythroid differentiation. When coexpressed with type I activin receptor ActR-I or ActR-IB in concert with type II receptor ActR-II, Smad7 efficiently reduced an early transcriptional response mediated by ActR-I but had only a minimal effect on the response mediated by ActR-IB. In the presence of Smad7, overexpression of an activated form of ActR-IB, but not of an activated form of ActR-I, induced F5-5 cells to differentiate. These results suggest that Smad7 selectively interferes with the ActR-I pathway in activin signal transduction. The findings also indicate the existence of a novel activity of Smad7 that inhibits erythroid differentiation by blocking intracellular signaling of activin.


1994 ◽  
Vol 14 (6) ◽  
pp. 3810-3821
Author(s):  
J Cárcamo ◽  
F M Weis ◽  
F Ventura ◽  
R Wieser ◽  
J L Wrana ◽  
...  

Transforming growth factor beta (TGF-beta) and activin bind to receptor complexes that contain two distantly related transmembrane serine/threonine kinases known as receptor types I and II. The type II receptors determine ligand binding specificity, and each interacts with a distinct repertoire of type I receptors. Here we identify a new type I receptor for activin, ActR-IB, whose kinase domain is nearly identical to that of the recently cloned TGF-beta type I receptor, T beta R-I. ActR-IB has the structural and binding properties of a type I receptor: it binds activin only in the presence of an activin type II receptor and forms a heteromeric noncovalent complex with activin type II receptors. In Mv1Lu lung epithelial cells, ActR-IB and T beta R-I signal a common set of growth-inhibitory and transcriptional responses in association with their corresponding ligands and type II receptors. The transcriptional responses include elevated expression of fibronectin and plasminogen activator inhibitor 1. Although T beta R-I and ActR-IB are nearly identical in their kinase domains (90% amino acid sequence identity), their corresponding type II receptor kinase domains are very different from each other (42% amino acid sequence identity). Therefore, signaling of a specific set of responses by TGF-beta and activin correlates with the presence of similar type I kinases in their complex. Indeed, other TGF-beta and activin type I receptors (TSR-I and ActR-I) whose kinase domains significantly diverge from those of T beta R-I and ActR-IB do not substitute as mediators of these growth-inhibitory and extracellular matrix transcriptional responses. Hence, we conclude that the type I receptor subunits are primary specifiers of signals sent by TGF-beta and activin receptor complexes.


Blood ◽  
1990 ◽  
Vol 76 (3) ◽  
pp. 533-537 ◽  
Author(s):  
SM Greenberg ◽  
C Chandrasekhar ◽  
DE Golan ◽  
RI Handin

Megakaryocyte development is a carefully controlled process that is at least partially regulated by cytokines. Previous investigations of megakaryocyte development have focused primarily on defining growth factors that induce or enhance differentiation. In this study we demonstrate that a specific cytokine, transforming growth factor beta 1 (TGF beta 1), inhibits the phorbol myristate acetate (PMA)-induced differentiation of the Dami human megakaryocytic cell line. The addition of purified platelet TGF beta 1 inhibits PMA-induced endomitosis in a dose-dependent manner. Inhibition of endomitosis occurs with as little as 0.4 pmol/L TGF beta 1, is half-maximal at 6.4 pmol/L, and is maximal between 40 and 200 pmol/L TGF beta 1. Inhibition does not require other growth factors or nonmegakaryocytic cells. Removal of TGF beta 1 from the cultures decreases inhibition, suggesting that the continuous presence of TGF beta 1 is required and that its effects are reversible. This effect occurs even though the Dami cells constitutively express TGF beta 1 messenger RNA (mRNA) and the TGF beta 1 mRNA levels are increased by PMA. TGF beta 1 also has been shown to inhibit endomitosis during short-term culture of primary human megakaryocytes. These results suggest a model in which negative as well as positive regulatory factors modulate a critical stage of megakaryocyte development.


1986 ◽  
Vol 103 (5) ◽  
pp. 1799-1805 ◽  
Author(s):  
E N Olson ◽  
E Sternberg ◽  
J S Hu ◽  
G Spizz ◽  
C Wilcox

Type beta transforming growth factor (TGF beta) has been shown to be both a positive and negative regulator of cellular proliferation and differentiation. The effects of TGF beta also are cell-type specific and appear to be modulated by other growth factors. In the present study, we examined the potential of TGF beta for control of myogenic differentiation. In mouse C-2 myoblasts, TGF beta inhibited fusion and prevented expression of the muscle-specific gene products, creatine kinase and acetylcholine receptor. Differentiation of the nonfusing muscle cell line, BC2Hl, was also inhibited by TGF beta in a dose-dependent manner (ID50 approximately 0.5 ng/ml). TGF beta was not mitogenic for either muscle cell line, indicating that its inhibitory effects do not require cell proliferation. Inhibition of differentiation required the continual presence of TGF beta in the culture media. Removal of TGF beta led to rapid appearance of muscle proteins, which indicates that intracellular signals generated by TGF beta are highly transient and require continuous occupancy of the TGF beta receptor. Northern blot hybridization analysis using a muscle creatine kinase cDNA probe indicated that TGF beta inhibited differentiation at the level of muscle-specific mRNA accumulation. These results provide the first demonstration that TGF beta is a potent regulator of myogenic differentiation and suggest that TGF beta may play an important role in the control of tissue-specific gene expression during development.


Sign in / Sign up

Export Citation Format

Share Document