scholarly journals The Mitogen-Activated Protein Kinase Signaling Pathway Stimulates Mos mRNA Cytoplasmic Polyadenylation duringXenopus Oocyte Maturation

1999 ◽  
Vol 19 (3) ◽  
pp. 1990-1999 ◽  
Author(s):  
Emily L. Howard ◽  
Amanda Charlesworth ◽  
Joseph Welk ◽  
Angus M. MacNicol

ABSTRACT The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both theXenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.

2002 ◽  
Vol 22 (6) ◽  
pp. 631-647 ◽  
Author(s):  
Elaine A. Irving ◽  
Mark Bamford

Protein kinase-mediated signaling cascades constitute the major route by which cells respond to their extracellular environment. Of these, three well-characterized mitogen-activated protein kinase (MAPK) signaling pathways are those that use the extracellular signal-regulated kinase (ERK1/2) or the stress-activated protein kinase (p38/SAPK2 or JNK/SAPK) pathways. Mitogenic stimulation of the MAPK-ERK1/2 pathway modulates the activity of many transcription factors, leading to biological responses such as proliferation and differentiation. In contrast, the p38/SAPK2 and JNK/SAPK (c-Jun amino-terminal kinase/stress-activated protein kinase) pathways are only weakly, if at all, activated by mitogens, but are strongly activated by stress stimuli. There is now a growing body of evidence showing that these kinase signaling pathways become activated following a variety of injury stimuli including focal cerebral ischemia. Whether their activation, however, is merely an epiphenomenon of the process of cell death, or is actually involved in the mechanisms underlying ischemia-induced degeneration, remains to be fully understood. This review provides an overview of the current understanding of kinase pathway activation following cerebral ischemia and discusses the evidence supporting a role for these kinases in the mechanisms underlying ischemia-induced cell death.


1997 ◽  
Vol 17 (11) ◽  
pp. 6419-6426 ◽  
Author(s):  
C H de Moor ◽  
J D Richter

Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.


2005 ◽  
Vol 25 (11) ◽  
pp. 4676-4682 ◽  
Author(s):  
Jeffrey P. MacKeigan ◽  
Leon O. Murphy ◽  
Christopher A. Dimitri ◽  
John Blenis

ABSTRACT The mitogen-activated protein kinase (MAPK) pathway is an evolutionarily conserved signaling module that controls important cell fate decisions in a variety of physiological contexts. During Xenopus oocyte maturation, the MAPK cascade converts an increasing progesterone stimulus into a switch-like, all-or-nothing response. While the importance of such switch-like behavior is widely discussed in the literature, it is not known whether the MAPK pathway in mammalian cells exhibits a switch-like or graded response. For this study, we used flow cytometry and immunofluorescence to generate single-cell measurements of MAPK signaling in Swiss 3T3 fibroblasts. In contrast to the case in Xenopus oocytes, we found that ERK activation in individual mammalian cells is not ultrasensitive and shows a graded response to changes in agonist concentration. Thus, the conserved MAPK signaling module exhibits different systems-level properties in different cellular contexts. Furthermore, the graded ERK response was converted into a more switch-like behavior at the level of immediate-early gene induction and cell cycle progression. Thus, while MAPK signaling is involved in all-or-nothing cell fate decisions for both Xenopus oocyte maturation and mammalian fibroblast proliferation, the underlying mechanisms responsible for the switch-like nature of the cellular responses are different in these two systems, with the mechanism appearing to lie downstream of the kinase cascade in mammalian fibroblasts.


2016 ◽  
Vol 90 (21) ◽  
pp. 9743-9757 ◽  
Author(s):  
Finny S. Varghese ◽  
Bastian Thaa ◽  
Siti Naqiah Amrun ◽  
Diane Simarmata ◽  
Kai Rausalu ◽  
...  

ABSTRACT Chikungunya virus (CHIKV) has infected millions of people in the tropical and subtropical regions since its reemergence in the last decade. We recently identified the nontoxic plant alkaloid berberine as an antiviral substance against CHIKV in a high-throughput screen. Here, we show that berberine is effective in multiple cell types against a variety of CHIKV strains, also at a high multiplicity of infection, consolidating the potential of berberine as an antiviral drug. We excluded any effect of this compound on virus entry or on the activity of the viral replicase. A human phosphokinase array revealed that CHIKV infection specifically activated the major mitogen-activated protein kinase (MAPK) signaling pathways extracellular signal-related kinase (ERK), p38 and c-Jun NH 2 -terminal kinase (JNK). Upon treatment with berberine, this virus-induced MAPK activation was markedly reduced. Subsequent analyses with specific inhibitors of these kinases indicated that the ERK and JNK signaling cascades are important for the generation of progeny virions. In contrast to specific MAPK inhibitors, berberine lowered virus-induced activation of all major MAPK pathways and resulted in a stronger reduction in viral titers. Further, we assessed the in vivo efficacy of berberine in a mouse model and measured a significant reduction of CHIKV-induced inflammatory disease. In summary, we demonstrate the efficacy of berberine as a drug against CHIKV and highlight the importance of the MAPK signaling pathways in the alphavirus infectious cycle. IMPORTANCE Chikungunya virus (CHIKV) is a mosquito-borne virus that causes severe and persistent muscle and joint pain and has recently spread to the Americas. No licensed drug exists to counter this virus. In this study, we report that the alkaloid berberine is antiviral against different CHIKV strains and in multiple human cell lines. We demonstrate that berberine collectively reduced the virus-induced activation of cellular mitogen-activated protein kinase signaling. The relevance of these signaling cascades in the viral life cycle was emphasized by specific inhibitors of these kinase pathways, which decreased the production of progeny virions. Berberine significantly reduced CHIKV-induced inflammatory disease in a mouse model, demonstrating efficacy of the drug in vivo . Overall, this work makes a strong case for pursuing berberine as a potential anti-CHIKV therapeutic compound and for exploring the MAPK signaling pathways as antiviral targets against alphavirus infections.


Author(s):  
Jiawen Yong ◽  
Julia von Bremen ◽  
Gisela Ruiz-Heiland ◽  
Sabine Ruf

We aimed to investigate the molecular effect that adiponectin exerts on cementoblasts especially in the presence of compressive forces. OCCM-30 cells (M. Somerman, NIH, NIDCR, United States) were used. Real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and western blots were employed to verify if the mRNA and protein levels of adiponectin receptors (AdipoRs), mitogen-activated protein kinase (MAPK), and β-catenin signaling were influenced by compressive forces or adiponectin. Moreover, siRNAs targeting P38α, JNK1, ERK1, ERK2, and AdipoRs as well as pharmacological MAPK inhibition were performed. We found that compressive forces increase the expression of AdipoRs. Adiponectin and compression up-regulate P38α,JNK1, ERK1, and ERK2 as well as β-catenin gene expression. Western blots showed that co-stimuli activate the MAPK and β-catenin signaling pathways. MAPK inhibition alters the compression-induced β-catenin activation and the siRNAs targeting AdipoRs, P38α, and JNK1, showing the interaction of single MAPK molecules and β-catenin signaling in response to compression or adiponectin. Silencing by a dominantly negative version of P38α and JNK1 attenuates adiponectin-induced TCF/LEF reporter activation. Together, we found that light compressive forces activate β-catenin and MAPK signaling pathways. Adiponectin regulates β-catenin signaling principally by inactivating the GSK-3β kinase activity. β-Catenin expression was partially inhibited by MAPK blockade, indicating that MAPK plays a crucial role regulating β-catenin during cementogenesis. Moreover, adiponectin modulates GSK-3β and β-catenin mostly through AdipoR1. P38α is a key connector between β-catenin, TCF/LEF transcription, and MAPK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document