scholarly journals Cdc4, a Protein Required for the Onset of S Phase, Serves an Essential Function during G2/M Transition in Saccharomyces cerevisiae

1999 ◽  
Vol 19 (8) ◽  
pp. 5512-5522 ◽  
Author(s):  
Phuay-Yee Goh ◽  
Uttam Surana

ABSTRACT Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G1/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4(cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1cells. However, the previously characterized mutationcdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G2/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G2/M transition when released from hydroxyurea-induced S-phase arrest. A second function forCDC4 in late S or G2 phase was further confirmed by the observation that cells lacking the CDC4gene are arrested both at G1/S and at G2/M. We subsequently isolated additional temperature-sensitive mutations in theCDC4 gene (such as cdc4-12) that render the mutant defective in both G1/S and G2/M transitions at the restrictive temperature. While the G1/S block in both cdc4-12 and cdc4Δ mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G2/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.

1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


1999 ◽  
Vol 19 (4) ◽  
pp. 2535-2546 ◽  
Author(s):  
Lynne D. Berry ◽  
Anna Feoktistova ◽  
Melanie D. Wright ◽  
Kathleen L. Gould

ABSTRACT The Schizosaccharomyces pombe dim1 + gene is required for entry into mitosis and for chromosome segregation during mitosis. To further understand dim1p function, we undertook a synthetic lethal screen with the temperature-sensitive dim1-35 mutant and isolated lid (for lethal in dim1-35) mutants. Here, we describe the temperature-sensitive lid1-6mutant. At the restrictive temperature of 36°C, lid1-6mutant cells arrest with a “cut” phenotype similar to that ofcut4 and cut9 mutants. An epitope-tagged version of lid1p is a component of a multiprotein ∼20S complex; the presence of lid1p in this complex depends upon functionalcut9 +. lid1p-myc coimmunoprecipitates with several other proteins, including cut9p and nuc2p, and the presence of cut9p in a 20S complex depends upon the activity oflid1 +. Further, lid1 +function is required for the multiubiquitination of cut2p, an anaphase-promoting complex or cyclosome (APC/C) target. Thus, lid1p is a component of the S. pombe APC/C. In dim1mutants, the abundances of lid1p and the APC/C complex decline significantly, and the ubiquitination of an APC/C target is abolished. These data suggest that at least one role of dim1p is to maintain or establish the steady-state level of the APC/C.


1997 ◽  
Vol 17 (6) ◽  
pp. 3315-3322 ◽  
Author(s):  
P A Tavormina ◽  
Y Wang ◽  
D J Burke

Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.


2009 ◽  
Vol 29 (16) ◽  
pp. 4552-4562 ◽  
Author(s):  
Vasso Makrantoni ◽  
Michael J. R. Stark

ABSTRACT Accurate chromosome segregation requires the capture of sister kinetochores by microtubules from opposite spindle poles prior to the initiation of anaphase, a state termed chromosome biorientation. In the budding yeast Saccharomyces cerevisiae, the conserved protein kinase Ipl1 (Aurora B in metazoans) is critical for ensuring correct chromosomal alignment. Ipl1 associates with its activators Sli15 (INCENP), Nbl1 (Borealin), and Bir1 (Survivin), but while Sli15 clearly functions with Ipl1 to promote chromosome biorientation, the role of Bir1 has been uncertain. Using a temperature-sensitive bir1 mutant (bir1-17), we show that Bir1 is needed to permit efficient chromosome biorientation. However, once established, chromosome biorientation is maintained in bir1-17 cells at the restrictive temperature. Ipl1 is partially delocalized in bir1-17 cells, and its protein kinase activity is markedly reduced under nonpermissive conditions. bir1-17 cells arrest normally in response to microtubule depolymerization but fail to delay anaphase when sister kinetochore tension is reduced. Thus, Bir1 is required for the tension checkpoint. Despite their robust mitotic arrest in response to nocodazole, bir1-17 cells are hypersensitive to microtubule-depolymerizing drugs and show a more severe biorientation defect on recovery from nocodazole treatment. The role of Bir1 therefore may become more critical when spindle formation is delayed.


1988 ◽  
Vol 8 (3) ◽  
pp. 1067-1075 ◽  
Author(s):  
S P Jackson ◽  
M Lossky ◽  
J D Beggs

Strains of Saccharomyces cerevisiae that bear the temperature-sensitive mutation rna8-1 are defective in nuclear pre-mRNA splicing at the restrictive temperature (36 degrees C), suggesting that the RNA8 gene encodes a component of the splicing machinery. The RNA8 gene was cloned by complementation of the temperature-sensitive growth defect of an rna8-1 mutant strain. Integrative transformation and gene disruption experiments confirmed the identity of the cloned DNA and demonstrated that the RNA8 gene encodes an essential function. The RNA8 gene was shown to be represented once per S. cerevisiae haploid genome and to encode a low-abundance transcript of approximately 7.4 kilobases. By using antisera raised against beta-galactosidase-RNA8 fusion proteins, the RNA8 gene product was identified in S. cerevisiae cell extracts as a low-abundance protein of approximately 260 kilodaltons. Immunodepletion of the RNA8 protein specifically abolished the activity of S. cerevisiae in vitro splicing extracts, confirming that RNA8 plays an essential role in splicing.


1994 ◽  
Vol 14 (9) ◽  
pp. 6350-6360 ◽  
Author(s):  
F Houman ◽  
C Holm

To investigate chromosome segregation in Saccharomyces cerevisiae, we examined a collection of temperature-sensitive mutants that arrest as large-budded cells at restrictive temperatures (L. H. Johnston and A. P. Thomas, Mol. Gen. Genet. 186:439-444, 1982). We characterized dbf8, a mutation that causes cells to arrest with a 2c DNA content and a short spindle. DBF8 maps to chromosome IX near the centromere, and it encodes a 36-kDa protein that is essential for viability at all temperatures. Mutational analysis reveals that three dbf8 alleles are nonsense mutations affecting the carboxy-terminal third of the encoded protein. Since all of these mutations confer temperature sensitivity, it appears that the carboxyl-terminal third of the protein is essential only at a restrictive temperature. In support of this conclusion, an insertion of URA3 at the same position also confers a temperature-sensitive phenotype. Although they show no evidence of DNA damage, dbf8 mutants exhibit increased rates of chromosome loss and nondisjunction even at a permissive temperature. Taken together, our data suggest that Dbf8p plays an essential role in chromosome segregation.


1988 ◽  
Vol 8 (3) ◽  
pp. 1067-1075
Author(s):  
S P Jackson ◽  
M Lossky ◽  
J D Beggs

Strains of Saccharomyces cerevisiae that bear the temperature-sensitive mutation rna8-1 are defective in nuclear pre-mRNA splicing at the restrictive temperature (36 degrees C), suggesting that the RNA8 gene encodes a component of the splicing machinery. The RNA8 gene was cloned by complementation of the temperature-sensitive growth defect of an rna8-1 mutant strain. Integrative transformation and gene disruption experiments confirmed the identity of the cloned DNA and demonstrated that the RNA8 gene encodes an essential function. The RNA8 gene was shown to be represented once per S. cerevisiae haploid genome and to encode a low-abundance transcript of approximately 7.4 kilobases. By using antisera raised against beta-galactosidase-RNA8 fusion proteins, the RNA8 gene product was identified in S. cerevisiae cell extracts as a low-abundance protein of approximately 260 kilodaltons. Immunodepletion of the RNA8 protein specifically abolished the activity of S. cerevisiae in vitro splicing extracts, confirming that RNA8 plays an essential role in splicing.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Janet R Mullen ◽  
Vivek Kaliraman ◽  
Samer S Ibrahim ◽  
Steven J Brill

Abstract The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases and is required for genome stability, but not cell viability. To identify proteins that function in the absence of Sgs1, a synthetic-lethal screen was performed. We obtained mutations in six complementation groups that we refer to as SLX genes. Most of the SLX genes encode uncharacterized open reading frames that are conserved in other species. None of these genes is required for viability and all SLX null mutations are synthetically lethal with mutations in TOP3, encoding the SGS1-interacting DNA topoisomerase. Analysis of the null mutants identified a pair of genes in each of three phenotypic classes. Mutations in MMS4 (SLX2) and SLX3 generate identical phenotypes, including weak UV and strong MMS hypersensitivity, complete loss of sporulation, and synthetic growth defects with mutations in TOP1. Mms4 and Slx3 proteins coimmunoprecipitate from cell extracts, suggesting that they function in a complex. Mutations in SLX5 and SLX8 generate hydroxyurea sensitivity, reduced sporulation efficiency, and a slow-growth phenotype characterized by heterogeneous colony morphology. The Slx5 and Slx8 proteins contain RING finger domains and coimmunoprecipitate from cell extracts. The SLX1 and SLX4 genes are required for viability in the presence of an sgs1 temperature-sensitive allele at the restrictive temperature and Slx1 and Slx4 proteins are similarly associated in cell extracts. We propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs encode heterodimeric complexes and speculate that these complexes are required to resolve recombination intermediates that arise in response to DNA damage, during meiosis, and in the absence of SGS1/TOP3.


2004 ◽  
Vol 24 (16) ◽  
pp. 6891-6899 ◽  
Author(s):  
Xuan Wang ◽  
Grzegorz Ira ◽  
José Antonio Tercero ◽  
Allyson M. Holmes ◽  
John F. X. Diffley ◽  
...  

ABSTRACT Mitotic double-strand break (DSB)-induced gene conversion involves new DNA synthesis. We have analyzed the requirement of several essential replication components, the Mcm proteins, Cdc45p, and DNA ligase I, in the DNA synthesis of Saccharomyces cerevisiae MAT switching. In an mcm7-td (temperature-inducible degron) mutant, MAT switching occurred normally when Mcm7p was degraded below the level of detection, suggesting the lack of the Mcm2-7 proteins during gene conversion. A cdc45-td mutant was also able to complete recombination. Surprisingly, even after eliminating both of the identified DNA ligases in yeast, a cdc9-1 dnl4Δ strain was able to complete DSB repair. Previous studies of asynchronous cultures carrying temperature-sensitive alleles of PCNA, DNA polymerase α (Polα), or primase showed that these mutations inhibited MAT switching (A. M. Holmes and J. E. Haber, Cell 96:415-424, 1999). We have reevaluated the roles of these proteins in G2-arrested cells. Whereas PCNA was still essential for MAT switching, neither Polα nor primase was required. These results suggest that arresting cells in S phase using ts alleles of Polα-primase, prior to inducing the DSB, sequesters some other component that is required for repair. We conclude that DNA synthesis during gene conversion is different from S-phase replication, involving only leading-strand polymerization.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1389-1400
Author(s):  
Xiao Ming Zuo ◽  
G Desmond Clark-Walker ◽  
Xin Jie Chen

Abstract The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential for maintenance of a functional ρ+ genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a ρ+ strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have ρ− genomes that are stably maintained. Interestingly, all surviving ρ− mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS ρ− mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of ρ+ and ori/rep-devoid ρ− mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS ρ− genome is stably maintained in a mgm101, rpo41 double mutant.


Sign in / Sign up

Export Citation Format

Share Document