scholarly journals Predominance of Duplicative VSG Gene Conversion in Antigenic Variation in African Trypanosomes

1999 ◽  
Vol 19 (9) ◽  
pp. 5839-5846 ◽  
Author(s):  
Nicholas P. Robinson ◽  
Nils Burman ◽  
Sara E. Melville ◽  
J. David Barry

ABSTRACT A number of mechanisms have been described by which African trypanosomes undergo the genetic switches that differentially activate their variant surface glycoprotein genes (VSGs) and bring about antigenic variation. These mechanisms have been observed mainly in trypanosome lines adapted, by rapid syringe passaging, to laboratory conditions. Such “monomorphic” lines, which routinely yield only the proliferative bloodstream form and do not develop through their life cycle, have VSG switch rates up to 4 or 5 orders of magnitude lower than those of nonadapted lines. We have proposed that nonadapted, or pleomorphic, trypanosomes normally have an active VSGswitch mechanism, involving gene duplication, that is depressed, or from which a component is absent, in monomorphic lines. We have characterized 88 trypanosome clones from the first two relapse peaks of a single rabbit infection with pleomorphic trypanosomes and shown that they represent 11 different variable antigen types (VATs). The pattern of appearance in the first relapse peak was generally reproducible in three more rabbit infections. Nine of these VATs had activatedVSGs by gene duplication, the tenth possibly also had done so, and only one had activated a VSG by the transcriptional switch mechanism that predominates in monomorphic lines. At least 10 of the donor genes have telomeric silent copies, and many reside on minichromosomes. It appears that trypanosome antigenic variation is dominated by one, relatively highly active, mechanism rather than by the plethora of pathways described before.

2003 ◽  
Vol 2 (1) ◽  
pp. 84-94 ◽  
Author(s):  
Mihaela Lorger ◽  
Markus Engstler ◽  
Matthias Homann ◽  
H. Ulrich Göringer

ABSTRACT African trypanosomes cause sleeping sickness in humans and Nagana in cattle. The parasites multiply in the blood and escape the immune response of the infected host by antigenic variation. Antigenic variation is characterized by a periodic change of the parasite protein surface, which consists of a variant glycoprotein known as variant surface glycoprotein (VSG). Using a SELEX (systematic evolution of ligands by exponential enrichment) approach, we report the selection of small, serum-stable RNAs, so-called aptamers, that bind to VSGs with subnanomolar affinity. The RNAs are able to recognize different VSG variants and bind to the surface of live trypanosomes. Aptamers tethered to an antigenic side group are capable of directing antibodies to the surface of the parasite in vitro. In this manner, the RNAs might provide a new strategy for a therapeutic intervention to fight sleeping sickness.


1983 ◽  
Vol 3 (3) ◽  
pp. 399-409
Author(s):  
S Longacre ◽  
U Hibner ◽  
A Raibaud ◽  
H Eisen ◽  
T Baltz ◽  
...  

African trypanosomes resist the immune response of their mammalian hosts by varying the surface glycoprotein which constitutes their antigenic identity. The molecular mechanism of this antigenic variation involves the successive activation of a series of genes which code for different variant surface glycoproteins (VSGs). We have studied the expression of two VSG genes (those of VSG-1 and VSG-28) in Trypanosoma equiperdum, and we report the following findings. (i) The expression of both VSG genes is associated with the duplication and transposition of corresponding basic copy genes. (ii) The duplicated transposed copy appears to be the expressed copy. (iii) Although there are multiple genes which cross-hybridize with the VSG-1 cDNA probe, only one of these appears to be used as a template for the expression-linked copy in four independent BoTat-1 clones. (iv) Analysis of the genomic environments of the expressed VSG-1 genes from each of four independently derived BoTat-1 trypanosome clones revealed that there are at least three different sites into which the expression-linked copy can be inserted.


1983 ◽  
Vol 3 (3) ◽  
pp. 410-414
Author(s):  
S Longacre ◽  
A Raibaud ◽  
U Hibner ◽  
G Buck ◽  
H Eisen ◽  
...  

Antigenic variation in Trypanosoma equiperdum is associated with the sequential expression of variant surface glycoprotein (VSG) genes in a process which involves gene duplication and transposition events. In this paper we present evidence that the genomic environment of the VSG-1 basic copy gene, the template for duplicated, expression-linked VSG-1 genes, differs in every trypanosome clone examined. This variation is thus independent of the expression of the VSG-1 gene, and it also appears to be restricted to the 3' genomic environment. It is also demonstrated that the DNA located 3' to the VSG-1 basic copy gene is moderately sensitive to digestion when the nuclei of either expressor or non-expressor trypanosomes are treated with DNase I.


Open Biology ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 190182 ◽  
Author(s):  
Núria Sima ◽  
Emilia Jane McLaughlin ◽  
Sebastian Hutchinson ◽  
Lucy Glover

African trypanosomes escape the mammalian immune response by antigenic variation—the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a ‘new’ VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Igor Cestari ◽  
Hilary McLeland-Wieser ◽  
Kenneth Stuart

ABSTRACT Allelic exclusion of variant surface glycoprotein (VSG) genes is essential for African trypanosomes to evade the host antibody response by antigenic variation. The mechanisms by which this parasite expresses only one of its ∼2,000 VSG genes at a time are unknown. We show that nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) interacts with repressor activator protein 1 (RAP1) in a multiprotein complex and functions in the control of VSG allelic exclusion. RAP1 binds PIP5Pase substrate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], and catalytic mutation of PIP5Pase that inhibits PI(3,4,5)P3 dephosphorylation results in simultaneous transcription of VSGs from all telomeric expression sites (ESs) and from silent subtelomeric VSG arrays. PIP5Pase and RAP1 bind to telomeric ESs, especially at 70-bp repeats and telomeres, and their binding is altered by PIP5Pase inactivation or knockdown, implying changes in ES chromatin organization. Our data suggest a model whereby PIP5Pase controls PI(3,4,5)P3 binding by RAP1 and, thus, RAP1 silencing of telomeric and subtelomeric VSG genes. Hence, allelic exclusion of VSG genes may entail control of nuclear phosphoinositides.


2009 ◽  
Vol 16 (7) ◽  
pp. 999-1002 ◽  
Author(s):  
Thao Tran ◽  
Filip Claes ◽  
Didier Verloo ◽  
Henri De Greve ◽  
Philippe Büscher

ABSTRACT Current serological diagnosis of Trypanosoma evansi infection in camels is based on the native variable antigen type RoTat 1.2. The goal of this study was to develop a novel serological diagnostic test based on a nonvariable protein and freed from the use of rats or mice for its production. An enzyme-linked immunosorbent assay using a recombinant extracellular domain of invariant surface glycoprotein 75 (ELISA/rISG75) was developed and tested on a collection of 184 camel sera. The results were compared to those obtained from three established antibody detection tests based on variable surface glycoprotein RoTat 1.2: an ELISA for T. evansi (ELISA/T. evansi), a card agglutination test for trypanosomiasis (CATT/T. evansi), and an immune trypanolysis (TL) assay. The ELISA/rISG75 and the ELISA/T. evansi showed a sensitivity of 94.6% (95% confidence interval [CI], 87.8 to 98.2%, at 19% positivity cutoff value) and 98.9% (95% CI, 94.1 to 99.8, at 12% positivity cutoff value), respectively. The ELISA/rISG75 had 100% specificity (CI, 95.9 to 100%), while the ELISA/T. evansi showed 98.9% specificity (CI, 95.9 to 100%). The ELISA/rISG75 demonstrated an almost perfect agreement with the TL assay, the CATT/T. evansi, and the ELISA/T. evansi, with kappa scores of at least 0.94. The ELISA/rISG75, having a performance comparable to that of the gold standard (the TL assay) and being independent of antigenic variation, may become a new reference test for surra in camels. It opens avenues for the diagnosis of T. evansi infections in other hosts as well as for the development of a pan-Trypanozoon test for detection of Trypanosoma brucei brucei, T. b. gambiense, T. b. rhodesiense, T. evansi, and T. equiperdum.


2020 ◽  
Vol 48 (17) ◽  
pp. 9660-9680
Author(s):  
Andrea Zurita Leal ◽  
Marie Schwebs ◽  
Emma Briggs ◽  
Nadine Weisert ◽  
Helena Reis ◽  
...  

Abstract Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.


1998 ◽  
Vol 18 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Mike Cross ◽  
Martin C. Taylor ◽  
Piet Borst

ABSTRACT African trypanosomes undergo antigenic variation of their variant surface glycoprotein (VSG) coat to avoid being killed by their mammalian hosts. The active VSG gene is located in one of many telomeric expression sites. Replacement of the VSG gene in the active site or switching between expression sites can give rise to a new VSG coat. To study Trypanosoma brucei VSG expression site inactivation rather than VSG gene switching, it is useful to have an in vitro negative-selection system independent of the VSG. We have achieved this aim by using a viral thymidine kinase (TK) gene. Following integration of the TK gene downstream of the 221a VSG expression site promoter, transformant cell lines became sensitive to the nucleoside analog 1-(2-deoxy-2-fluoro-8-d-arabinofuranosyl)-5-iodouracil. These TK trypanosomes were able to revert to resistance at a rate approaching 10−5 per cell per generation. The majority of revertants expressed a new VSG gene even though there had been no selection against the VSG itself. Analysis of these switched variants showed that some had shut down TK expression via an in situ expression site switch. However, most variants had the complete 221 expression site deleted and another VSG expression site activated. We speculate that a new VSG expression site cannot switch on without inactivation of the old site.


2005 ◽  
Vol 33 (5) ◽  
pp. 986-989 ◽  
Author(s):  
J.D. Barry ◽  
L. Marcello ◽  
L.J. Morrison ◽  
A.F. Read ◽  
K. Lythgoe ◽  
...  

African trypanosomes evade humoral immunity through antigenic variation, whereby they switch expression of the gene encoding their VSG (variant surface glycoprotein) coat. Switching proceeds by duplication of silent VSG genes into a transcriptionally active locus. The genome project has revealed that most of the silent archive consists of hundreds of subtelomeric VSG tandem arrays, and that most of these are not functional genes. Precedent suggests that they can contribute combinatorially to the formation of expressed, functional genes through segmental gene conversion. These findings from the genome project have major implications for evolution of the VSG archive and for transmission of the parasite in the field.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Christopher Batram ◽  
Nicola G Jones ◽  
Christian J Janzen ◽  
Sebastian M Markert ◽  
Markus Engstler

We have discovered a new mechanism of monoallelic gene expression that links antigenic variation, cell cycle, and development in the model parasite Trypanosoma brucei. African trypanosomes possess hundreds of variant surface glycoprotein (VSG) genes, but only one is expressed from a telomeric expression site (ES) at any given time. We found that the expression of a second VSG alone is sufficient to silence the active VSG gene and directionally attenuate the ES by disruptor of telomeric silencing-1B (DOT1B)-mediated histone methylation. Three conserved expression-site-associated genes (ESAGs) appear to serve as signal for ES attenuation. Their depletion causes G1-phase dormancy and reversible initiation of the slender-to-stumpy differentiation pathway. ES-attenuated slender bloodstream trypanosomes gain full developmental competence for transformation to the tsetse fly stage. This surprising connection between antigenic variation and developmental progression provides an unexpected point of attack against the deadly sleeping sickness.


Sign in / Sign up

Export Citation Format

Share Document