scholarly journals New Model for the Yeast RNA Polymerase I Transcription Cycle

2001 ◽  
Vol 21 (15) ◽  
pp. 4847-4855 ◽  
Author(s):  
Pavel Aprikian ◽  
Beth Moorefield ◽  
Ronald H. Reeder

ABSTRACT Using an immobilized template assay, we observed two steps in assembly of the yeast RNA polymerase I (Pol I) preinitiation complex: stable binding of upstream activating factor (UAF) followed by recruitment of Pol I-Rrn3p and core factor (CF). Pol I is required for stable association of CF with the promoter and can be recruited in the absence of Rrn3p. Upon transcription initiation, Pol I-Rrn3p and CF dissociate from the promoter while UAF remains behind. These findings support a novel model in which the Pol I basal machinery cycles on and off the promoter with each round of transcription. This model accounts for previous observations that rRNA synthesis may be controlled by regulating both promoter accessibility and polymerase activity.

2006 ◽  
Vol 73 ◽  
pp. 203-216 ◽  
Author(s):  
Jackie Russell ◽  
Joost C.B.M. Zomerdijk

The rRNAs constitute the catalytic and structural components of the ribosome, the protein synthesis machinery of cells. The level of rRNA synthesis, mediated by Pol I (RNA polymerase I), therefore has a major impact on the life and destiny of a cell. In order to elucidate how cells achieve the stringent control of Pol I transcription, matching the supply of rRNA to demand under different cellular growth conditions, it is essential to understand the components and mechanics of the Pol I transcription machinery. In this review, we discuss: (i) the molecular composition and functions of the Pol I enzyme complex and the two main Pol I transcription factors, SL1 (selectivity factor 1) and UBF (upstream binding factor); (ii) the interplay between these factors during pre-initiation complex formation at the rDNA promoter in mammalian cells; and (iii) the cellular control of the Pol I transcription machinery.


2005 ◽  
Vol 86 (8) ◽  
pp. 2315-2322 ◽  
Author(s):  
Rajeev Banerjee ◽  
Mary K. Weidman ◽  
Sonia Navarro ◽  
Lucio Comai ◽  
Asim Dasgupta

Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3Cpro appeared to cleave the TATA-binding protein-associated factor 110 (TAF110), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF110 and purified 3Cpro indicated that the Q265G266 and Q805G806 sites were cleaved by 3Cpro. Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells.


2015 ◽  
Vol 35 (13) ◽  
pp. 2321-2331 ◽  
Author(s):  
Krysta L. Engel ◽  
Sarah L. French ◽  
Olga V. Viktorovskaya ◽  
Ann L. Beyer ◽  
David A. Schneider

Spt6 (suppressor ofTy6) has many roles in transcription initiation and elongation by RNA polymerase (Pol) II. These effects are mediated through interactions with histones, transcription factors, and the RNA polymerase. Two lines of evidence suggest that Spt6 also plays a role in rRNA synthesis. First, Spt6 physically associates with a Pol I subunit (Rpa43). Second, Spt6 interacts physically and genetically with Spt4/5, which directly affects Pol I transcription. Utilizing a temperature-sensitive allele,spt6-1004, we show that Spt6 is essential for Pol I occupancy of the ribosomal DNA (rDNA) and rRNA synthesis. Our data demonstrate that protein levels of an essential Pol I initiation factor, Rrn3, are reduced when Spt6 is inactivated, leading to low levels of Pol I-Rrn3 complex. Overexpression ofRRN3rescues Pol I-Rrn3 complex formation; however, rRNA synthesis is not restored. These data suggest that Spt6 is involved in either recruiting the Pol I-Rrn3 complex to the rDNA or stabilizing the preinitiation complex. The findings presented here identify an unexpected, essential role for Spt6 in synthesis of rRNA.


1997 ◽  
Vol 17 (4) ◽  
pp. 1787-1795 ◽  
Author(s):  
O Gadal ◽  
S Mariotte-Labarre ◽  
S Chedin ◽  
E Quemeneur ◽  
C Carles ◽  
...  

A34.5, a phosphoprotein copurifying with RNA polymerase I (Pol I), lacks homology to any component of the Pol II or Pol III transcription complexes. Cells devoid of A34.5 hardly affect growth and rRNA synthesis and generate a catalytically active but structurally modified enzyme also lacking subunit A49 upon in vitro purification. Other Pol I-specific subunits (A49, A14, and A12.2) are nonessential for growth at 30 degrees C but are essential (A49 and A12.2) or helpful (A14) at 25 or 37 degrees C. Triple mutants without A34.5, A49, and A12.2 are viable, but inactivating any of these subunits together with A14 is lethal. Lethality is rescued by expressing pre-rRNA from a Pol II-specific promoter, demonstrating that these subunits are collectively essential but individually dispensable for rRNA synthesis. A14 and A34.5 single deletions affect the subunit composition of the purified enzyme in pleiotropic but nonoverlapping ways which, if accumulated in the double mutants, provide a structural explanation for their strict synthetic lethality. A34.5 (but not A14) becomes quasi-essential in strains lacking DNA topoisomerase I, suggesting a specific role of this subunit in helping Pol I to overcome the topological constraints imposed on ribosomal DNA by transcription.


2018 ◽  
Author(s):  
Tommy Darrière ◽  
Michael Pilsl ◽  
Marie-Kerguelen Sarthou ◽  
Adrien Chauvier ◽  
Titouan Genty ◽  
...  

AbstractMost transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that wild-type RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.Author summaryThe nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yan Han ◽  
Chunli Yan ◽  
Thi Hoang Duong Nguyen ◽  
Ashleigh J Jackobel ◽  
Ivaylo Ivanov ◽  
...  

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from −27 to −16. Core Factor’s intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


2011 ◽  
Vol 22 (7) ◽  
pp. 1070-1079 ◽  
Author(s):  
Andrew S. Gilder ◽  
Phi M. Do ◽  
Zunamys I Carrero ◽  
Angela M. Cosman ◽  
Hanna J. Broome ◽  
...  

Coilin is a nuclear phosphoprotein that concentrates within Cajal bodies (CBs) and impacts small nuclear ribonucleoprotein (snRNP) biogenesis. Cisplatin and γ-irradiation, which cause distinct types of DNA damage, both trigger the nucleolar accumulation of coilin, and this temporally coincides with the repression of RNA polymerase I (Pol I) activity. Knockdown of endogenous coilin partially overrides the Pol I transcriptional arrest caused by cisplatin, while both ectopically expressed and exogenous coilin accumulate in the nucleolus and suppress rRNA synthesis. In support of this mechanism, we demonstrate that both cisplatin and γ-irradiation induce the colocalization of coilin with RPA-194 (the largest subunit of Pol I), and we further show that coilin can specifically interact with RPA-194 and the key regulator of Pol I activity, upstream binding factor (UBF). Using chromatin immunoprecipitation analysis, we provide evidence that coilin modulates the association of Pol I with ribosomal DNA. Collectively, our data suggest that coilin acts to repress Pol I activity in response to cisplatin-induced DNA damage. Our findings identify a novel and unexpected function for coilin, independent of its role in snRNP biogenesis, establishing a new link between the DNA damage response and the inhibition of rRNA synthesis.


2008 ◽  
Vol 28 (16) ◽  
pp. 4988-4998 ◽  
Author(s):  
Holger Bierhoff ◽  
Miroslav Dundr ◽  
Annemieke A. Michels ◽  
Ingrid Grummt

ABSTRACT The protein kinase casein kinase 2 (CK2) phosphorylates different components of the RNA polymerase I (Pol I) transcription machinery and exerts a positive effect on rRNA gene (rDNA) transcription. Here we show that CK2 phosphorylates the transcription initiation factor TIF-IA at serines 170 and 172 (Ser170/172), and this phosphorylation triggers the release of TIF-IA from Pol I after transcription initiation. Inhibition of Ser170/172 phosphorylation or covalent tethering of TIF-IA to the RPA43 subunit of Pol I inhibits rDNA transcription, leading to perturbation of nucleolar structure and cell cycle arrest. Fluorescence recovery after photobleaching and chromatin immunoprecipitation experiments demonstrate that dissociation of TIF-IA from Pol I is a prerequisite for proper transcription elongation. In support of phosphorylation of TIF-IA switching from the initiation into the elongation phase, dephosphorylation of Ser170/172 by FCP1 facilitates the reassociation of TIF-IA with Pol I, allowing a new round of rDNA transcription. The results reveal a mechanism by which the functional interplay between CK2 and FCP1 sustains multiple rounds of Pol I transcription.


1997 ◽  
Vol 17 (8) ◽  
pp. 4230-4237 ◽  
Author(s):  
R Voit ◽  
K Schäfer ◽  
I Grummt

The retinoblastoma susceptibility gene product pRb restricts cellular proliferation by affecting gene expression by all three classes of nuclear RNA polymerases. To elucidate the molecular mechanisms underlying pRb-mediated repression of ribosomal DNA (rDNA) transcription by RNA polymerase I, we have analyzed the effect of pRb in a reconstituted transcription system. We demonstrate that pRb, but not the related protein p107, acts as a transcriptional repressor by interfering with the assembly of transcription initiation complexes. The HMG box-containing transcription factor UBF is the main target for pRb-induced transcriptional repression. UBF and pRb form in vitro complexes involving the C-terminal part of pRb and HMG boxes 1 and 2 of UBF. We show that the interactions between UBF and TIF-IB and between UBF and RNA polymerase I, respectively, are not perturbed by pRb. However, the DNA binding activity of UBF to both synthetic cruciform DNA and the rDNA promoter is severely impaired in the presence of pRb. These studies reveal another mechanism by which pRb suppresses cell proliferation, namely, by direct inhibition of cellular rRNA synthesis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yashar Sadian ◽  
Florence Baudin ◽  
Lucas Tafur ◽  
Brice Murciano ◽  
Rene Wetzel ◽  
...  

AbstractRNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III.


Sign in / Sign up

Export Citation Format

Share Document