scholarly journals Constitutive Association of BRCA1 and c-Abl and Its ATM-Dependent Disruption after Irradiation

2002 ◽  
Vol 22 (12) ◽  
pp. 4020-4032 ◽  
Author(s):  
Nicolas Foray ◽  
Didier Marot ◽  
Voahangy Randrianarison ◽  
Nicole Dalla Venezia ◽  
Didier Picard ◽  
...  

ABSTRACT BRCA1 plays an important role in mechanisms of response to double-strand breaks, participating in genome surveillance, DNA repair, and cell cycle checkpoint arrests. Here, we identify a constitutive BRCA1-c-Abl complex and provide evidence for a direct interaction between the PXXP motif in the C terminus of BRCA1 and the SH3 domain of c-Abl. Following exposure to ionizing radiation (IR), the BRCA1-c-Abl complex is disrupted in an ATM-dependent manner, which correlates temporally with ATM-dependent phosphorylation of BRCA1 and ATM-dependent enhancement of the tyrosine kinase activity of c-Abl. The BRCA1-c-Abl interaction is affected by radiation-induced modification to both BRCA1 and c-Abl. We show that the C terminus of BRCA1 is phosphorylated by c-Abl in vitro. In vivo, BRCA1 is phosphorylated at tyrosine residues in an ATM-dependent, radiation-dependent manner. Tyrosine phosphorylation of BRCA1, however, is not required for the disruption of the BRCA1-c-Abl complex. BRCA1-mutated cells exhibit constitutively high c-Abl kinase activity that is not further increased on exposure to IR. We suggest a model in which BRCA1 acts in concert with ATM to regulate c-Abl tyrosine kinase activity.

1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123 ◽  
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


1991 ◽  
Vol 11 (3) ◽  
pp. 1553-1565 ◽  
Author(s):  
J R McWhirter ◽  
J Y Wang

Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis.


1988 ◽  
Vol 8 (8) ◽  
pp. 3510-3517
Author(s):  
S Giordano ◽  
M F Di Renzo ◽  
R Ferracini ◽  
L Chiadò-Piat ◽  
P M Comoglio

A protein with an Mr of 145,000 (p145) was detected by antibodies to phosphotyrosine by Western blot (immunoblot) analysis. This protein was phosphorylated on tyrosine in a gastric carcinoma cell line. In cells that were metabolically labeled with 32Pi, this protein was phosphorylated on tyrosine and serine. p145 is a cysteine-rich transmembrane glycoprotein. The extracellular domain could be labeled by 125I under nonpermeating conditions and was cleaved by mild trypsin treatment of intact cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed a shift of p145 mobility to an apparent Mr of 190,000. After immunoprecipitation with phosphotyrosine antibodies, p145 displayed a strong associated protein kinase activity in vitro, becoming phosphorylated on tyrosine. There was no immunological cross-reaction between p145 and known tyrosine kinases. Both in vivo and in vitro tyrosine phosphorylations were unaffected by the addition of known growth factors. However, p145 was rapidly dephosphorylated in vivo when cells were exposed to low pH, a condition that is known to dissociate ligands from their receptors. These data suggest that p145 is associated with a protein tyrosine kinase activity which, in the tumor cell line studied, is activated by an as yet unidentified factor.


1988 ◽  
Vol 8 (8) ◽  
pp. 3510-3517 ◽  
Author(s):  
S Giordano ◽  
M F Di Renzo ◽  
R Ferracini ◽  
L Chiadò-Piat ◽  
P M Comoglio

A protein with an Mr of 145,000 (p145) was detected by antibodies to phosphotyrosine by Western blot (immunoblot) analysis. This protein was phosphorylated on tyrosine in a gastric carcinoma cell line. In cells that were metabolically labeled with 32Pi, this protein was phosphorylated on tyrosine and serine. p145 is a cysteine-rich transmembrane glycoprotein. The extracellular domain could be labeled by 125I under nonpermeating conditions and was cleaved by mild trypsin treatment of intact cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions revealed a shift of p145 mobility to an apparent Mr of 190,000. After immunoprecipitation with phosphotyrosine antibodies, p145 displayed a strong associated protein kinase activity in vitro, becoming phosphorylated on tyrosine. There was no immunological cross-reaction between p145 and known tyrosine kinases. Both in vivo and in vitro tyrosine phosphorylations were unaffected by the addition of known growth factors. However, p145 was rapidly dephosphorylated in vivo when cells were exposed to low pH, a condition that is known to dissociate ligands from their receptors. These data suggest that p145 is associated with a protein tyrosine kinase activity which, in the tumor cell line studied, is activated by an as yet unidentified factor.


2002 ◽  
Vol 173 (1) ◽  
pp. 63-71 ◽  
Author(s):  
CW Elton ◽  
JS Pennington ◽  
SA Lynch ◽  
FM Carver ◽  
SN Pennington

Maternal diet during pregnancy has been reported to alter the offspring's ability to respond to a glucose challenge. The current studies report changes in basal and insulin-stimulated, in vitro glucose uptake in red (soleus) and white (extensor digitorum longus) muscle fiber types, as well as whole body insulin responsiveness of adult rat offspring associated with their mother's dietary fat and alcohol content during pregnancy. The offspring of Harlan-derived Sprague-Dawley female rats, dosed during pregnancy with ethanol (ETOH) via a liquid diet (35% of calories as ETOH) with either 12% or 35% of calories as fat, were compared with offspring from litters whose mothers were pair-fed an isocaloric amount of the liquid diet without ETOH. Maternal access to the liquid diets was terminated on day 20 of the pregnancies (sperm plug=day 0). The offspring were surrogate fostered within 48 h of birth to mothers which had consumed commercial chow throughout their pregnancy. Following weaning at 21 days of age, the offspring consumed only commercial rat chow and they were examined over the next 14 months for changes in glucose homeostasis as a consequence of in utero exposure to maternal dietary fat and/or alcohol. The 35% maternal fat diet resulted in both in vivo and in vitro decreases in insulin sensitivity. Thus, compared with adults whose mother's diet contained 12% fat, significant, in vitro muscle and in vivo whole body insulin resistance (measured by hyperinsulinemic-euglycemic clamping) was observed in adult rats whose mothers consumed 35% of dietary calories as fat. The addition of ethanol to the maternal 35% fat diet further reduced the offspring's red muscle tissues in vitro response to insulin, but did not affect whole body insulin sensitivity. Muscle basal and insulin-stimulated receptor tyrosine kinase activity were significantly decreased (approximately -50%) by the 35% fat maternal diet but there was no compensatory increase in serum insulin or glucose levels. Based upon both in vivo and in vitro data, these studies suggested that in utero exposure to 35% fat has a sustained effect on the adult offspring's glucose uptake/insulin sensitivity and that the effect is paralleled, at least in part, by decreased insulin receptor tyrosine kinase activity. In utero ETOH exposure resulted in the loss of basal and insulin-stimulated, in vitro glucose uptake in red muscle fibers but maternal dietary ETOH had no detectable effect on either in vivo insulin sensitivity or muscle tyrosine kinase activity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guoyun Jiang ◽  
Zhenglan Huang ◽  
Ying Yuan ◽  
Kun Tao ◽  
Wenli Feng

Abstract Background The pathogenesis of chronic myeloid leukemia (CML) is the formation of the BCR/ABL protein, which is encoded by the bcr/abl fusion gene, possessing abnormal tyrosine kinase activity. Despite the wide application of tyrosine kinase inhibitors (TKIs) in CML treatment, TKIs drug resistance or intolerance limits their further usage in a subset of patients. Furthermore, TKIs inhibit the tyrosine kinase activity of the BCR/ABL oncoprotein while failing to eliminate the pathologenic oncoprotein. To develop alternative strategies for CML treatment using therapeutic antibodies, and to address the issue that antibodies cannot pass through cell membranes, we have established a novel intracellular delivery of anti-BCR/ABL antibodies, which serves as a prerequisite for CML therapy. Methods Anti-BCR/ABL antibodies were encapsulated in poly(d, l-lactide-co-glycolide) nanoparticles (PLGA NPs) by a double emulsion method, and transferrin was labeled on the surface of the nanoparticles (Ab@Tf-Cou6-PLGA NPs). The characteristics of nanoparticles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cellular uptake of nanoparticles was measured by flow cytometry (FCM). The effect of nanoparticles on the apoptosis and proliferation of CML cells was testified by FCM and CCK-8 assay. In addition, the anti-cancer impact of nanoparticles was evaluated in mouse models of CML. Results The results demonstrated that the Ab@Tf-Cou6-PLGA NPs functioned as an intracellular deliverer of antibodies, and exhibited an excellent effect on degrading BCR/ABL oncoprotein in CML cells via the Trim-Away pathway. Treatment with Ab@Tf-Cou6-PLGA NPs inhibited the proliferation and induced the apoptosis of CML cells in vitro as well as impaired the oncogenesis ability of CML cells in vivo. Conclusions In conclusion, our study indicated that this approach achieved safe and efficient intracellular delivery of antibodies and degraded BCR/ABL oncoprotein via the Trim-Away pathway, which provides a promising therapeutic strategy for CML patients, particularly those with TKI resistance.


1991 ◽  
Vol 11 (3) ◽  
pp. 1553-1565
Author(s):  
J R McWhirter ◽  
J Y Wang

Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis.


Blood ◽  
1992 ◽  
Vol 80 (5) ◽  
pp. 1330-1338 ◽  
Author(s):  
M Okabe ◽  
Y Uehara ◽  
T Miyagishima ◽  
T Itaya ◽  
M Tanaka ◽  
...  

Abstract Herbimycin A, a benzoquinoid ansamycin antibiotic, was demonstrated to decrease intracellular phosphorylation by protein tyrosine kinase (PTK). In Philadelphia chromosome (Ph1)-positive leukemias such as chronic myelogenous leukemia (CML) and Ph1-positive acute lymphoblastic leukemia (ALL), both of which express bcr-abl fused gene products (P210bcr-abl or P190bcr-abl protein kinase) with augmented tyrosine kinase activities, herbimycin A markedly inhibited the in vitro growth of the Ph1-positive ALL cells and the leukemic cells derived from CML blast crisis. However, the same dose of herbimycin A did not inhibit in vitro growth of a broad spectrum of Ph1-negative human leukemia cells, and several other protein kinase antagonists also displayed no preferential inhibition. Furthermore, we demonstrated that herbimycin A has an antagonizing effect on the growth of transformed cells by a transfection of retroviral amphotrophic vector expressing P210bcr/abl into a murine interleukin (IL)-3-dependent myeloid FDC-P2 cell line. This inhibition was abrogated by the addition of sulfhydryl compounds, similar to the reaction previously described for Rous sarcoma virus transformation. The inhibitory effect of herbimycin A on the growth of Ph1-positive cells was associated with decreased bcr/abl tyrosine kinase activity, but no decrease of bcr-abl mRNA and protein, suggesting that the inactivation of bcr-abl tyrosine kinase activity by herbimycin A may be induced by its binding to the bcr-abl protein portion that is rich with sulfhydryl groups. The present study indicates that herbimycin A is a beneficial agent for the investigation of the role of the bcr-abl gene in Ph1-positive leukemias and further suggests that the development of agents inhibiting the bcr-abl gene product may offer a new therapeutic potential for Ph1-positive leukemias.


Sign in / Sign up

Export Citation Format

Share Document