scholarly journals A TATA Binding Protein Mutant with Increased Affinity for DNA Directs Transcription from a Reversed TATA Sequence In Vivo

2002 ◽  
Vol 22 (24) ◽  
pp. 8744-8755 ◽  
Author(s):  
J. Vaughn Spencer ◽  
Karen M. Arndt

ABSTRACT The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.

1997 ◽  
Vol 17 (8) ◽  
pp. 4490-4500 ◽  
Author(s):  
L A Stolinski ◽  
D M Eisenmann ◽  
K M Arndt

Interaction of the TATA box-binding protein (TBP) with promoters of RNA polymerase II-transcribed genes is an early and essential step in mRNA synthesis. Previous studies have demonstrated that the rate-limiting binding of TBP to a TATA element can be influenced by transcriptional regulatory proteins. To identify additional factors that may regulate DNA binding by TBP in vivo, we performed a genetic selection for extragenic suppressors of a yeast TBP mutant that exhibits altered and relaxed DNA binding specificity. This analysis has led to the discovery of a previously unidentified gene, RTF1. The original rtf1 suppressor mutation, which encodes a single amino acid change in Rtf1, and an rtf1 null allele suppress the effects of the TBP specificity mutant by altering transcription initiation. Differences in the patterns of transcription initiation in these strains strongly suggest that the rtf1 missense mutation is distinct from a simple loss-of-function allele. The results of genetic crosses indicate that suppression of TBP mutants by mutations in RTF1 occurs in an allele-specific fashion. In a strain containing wild-type TBP, the rtf1 null mutation suppresses the transcriptional effects of a Ty delta insertion mutation in the promoter of the HIS4 gene, a phenotype also conferred by the TBP altered-specificity mutant. Finally, as shown by indirect immunofluorescence experiments, Rtf1 is a nuclear protein. Taken together, our findings suggest that Rtf1 either directly or indirectly regulates the DNA binding properties of TBP and, consequently, the relative activities of different TATA elements in vivo.


1995 ◽  
Vol 15 (10) ◽  
pp. 5757-5761 ◽  
Author(s):  
H Xiao ◽  
J D Friesen ◽  
J T Lis

The binding of TATA-binding protein (TBP) to the TATA element is the first step in the initiation of RNA polymerase II transcription from many promoters in vitro. It has been proposed that upstream activator proteins stimulate transcription by recruiting TBP to the promoter, thus facilitating the assembly of a transcription complex. However, the role of activator proteins acting at this step to stimulate transcription in vivo remains largely speculative. To test whether recruitment of TBP to the promoter is sufficient for transcriptional activation in vivo, we constructed a hybrid protein containing TBP of the yeast Saccharomyces cerevisiae fused to the DNA-binding domain of GAL4. Our results show that TBP recruited by the GAL4 DNA-binding domain to promoters bearing a GAL4-binding site can interact with the TATA element and direct high levels of transcription. This finding indicates that binding of TBP to promoters in S. cerevisiae is a major rate-limiting step accelerated by upstream activator proteins.


2004 ◽  
Vol 24 (22) ◽  
pp. 10072-10082 ◽  
Author(s):  
Marcin P. Klejman ◽  
Lloyd A. Pereira ◽  
Hester J. T. van Zeeburg ◽  
Siv Gilfillan ◽  
Michael Meisterernst ◽  
...  

ABSTRACT Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAFII170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2α (DRAP1) and NC2β (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, we present evidence that the NC2α subunit interacts with BTAF1. In contrast, the NC2β subunit is not able to associate with BTAF1 and seems to interfere with the BTAF1-TBP interaction. Addition of NC2α or the NC2 complex can stimulate the ability of BTAF1 to interact with TBP. This function is dependent on the presence of ATP in cell extracts but does not involve the ATPase activity of BTAF1 nor phosphorylation of NC2α. Together, our results constitute the first evidence of the physical cooperation between BTAF1 and NC2α in TBP regulation and provide a framework to understand transcription functions of NC2α and NC2β in vivo.


1998 ◽  
Vol 18 (7) ◽  
pp. 3771-3781 ◽  
Author(s):  
Chi Li ◽  
James L. Manley

ABSTRACT The Drosophila homeodomain protein Even-skipped (Eve) is a transcriptional repressor, and previous studies have suggested that it functions by interfering with the basal transcription machinery. Here we describe experiments indicating that the mechanism of Eve repression involves a direct interaction with the TATA binding protein (TBP) that blocks binding of TBP-TFIID to the promoter. We first compared Eve activities in in vitro transcription systems reconstituted with either all the general transcription factors or only TBP, TFIIB, TFIIF30, and RNA polymerase II. In each case, equivalent and very efficient levels of repression were observed, indicating that no factors other than those in the minimal system are required for repression. We then show that Eve can function efficiently when its recognition sites are far from the promoter and that the same regions of Eve required for repression in vivo are necessary and sufficient for in vitro repression. This includes, in addition to an Ala-Pro-rich region, residues within the homeodomain. Using GAL4-Eve fusion proteins, we demonstrate that the homeodomain plays a role in repression in addition to DNA binding, which is to facilitate interaction with TBP. Single-round transcription experiments indicate that Eve must function prior to TBP binding to the promoter, suggesting a mechanism whereby Eve represses by competing with the TATA box for TBP binding. Consistent with this, excess TATA box-containing oligonucleotide is shown to specifically and efficiently disrupt the TBP-Eve interaction. Importantly, we show that Eve binds directly to TFIID and that this interaction can also be disrupted by the TATA oligonucleotide. We conclude that Eve represses transcription via a direct interaction with TBP that blocks TFIID binding to the promoter.


1999 ◽  
Vol 19 (11) ◽  
pp. 7610-7620 ◽  
Author(s):  
Paul A. Moore ◽  
Josef Ozer ◽  
Moreh Salunek ◽  
Gwenael Jan ◽  
Dennis Zerby ◽  
...  

ABSTRACT The TATA binding protein (TBP) plays a central role in eukaryotic and archael transcription initiation. We describe the isolation of a novel 23-kDa human protein that displays 41% identity to TBP and is expressed in most human tissue. Recombinant TBP-related protein (TRP) displayed barely detectable binding to consensus TATA box sequences but bound with slightly higher affinities to nonconsensus TATA sequences. TRP did not substitute for TBP in transcription reactions in vitro. However, addition of TRP potently inhibited basal and activated transcription from multiple promoters in vitro and in vivo. General transcription factors TFIIA and TFIIB bound glutathioneS-transferase–TRP in solution but failed to stimulate TRP binding to DNA. Preincubation of TRP with TFIIA inhibited TBP-TFIIA-DNA complex formation and addition of TFIIA overcame TRP-mediated transcription repression. TRP transcriptional repression activity was specifically reduced by mutations in TRP that disrupt the TFIIA binding surface but not by mutations that disrupt the TFIIB or DNA binding surface of TRP. These results suggest that TFIIA is a primary target of TRP transcription inhibition and that TRP may modulate transcription by a novel mechanism involving the partial mimicry of TBP functions.


2001 ◽  
Vol 21 (5) ◽  
pp. 1737-1746 ◽  
Author(s):  
Susan M. Kraemer ◽  
Ryan T. Ranallo ◽  
Ryan C. Ogg ◽  
Laurie A. Stargell

ABSTRACT TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.


2000 ◽  
Vol 20 (16) ◽  
pp. 5847-5857 ◽  
Author(s):  
Michael P. Ryan ◽  
Grace A. Stafford ◽  
Liuning Yu ◽  
Randall H. Morse

ABSTRACT Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae). We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing theHIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at theCHA1 promoter. Finally, we show that activation of theGAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.


1999 ◽  
Vol 19 (4) ◽  
pp. 2846-2852 ◽  
Author(s):  
Steven P. Solow ◽  
Larissa Lezina ◽  
Paul M. Lieberman

ABSTRACT Posttranslational modification of general transcription factors may be an important mechanism for global gene regulation. The general transcription factor IIA (TFIIA) binds to the TATA binding protein (TBP) and is essential for high-level transcription mediated by various activators. Modulation of the TFIIA-TBP interaction is a likely target of transcriptional regulation. We report here that Toa1, the large subunit of yeast TFIIA, is phosphorylated in vivo and that this phosphorylation stabilizes the TFIIA-TBP-DNA complex and is required for high-level transcription. Alanine substitution of serine residues 220, 225, and 232 completely eliminated in vivo phosphorylation of Toa1, although no single amino acid substitution of these serine residues eliminated phosphorylation in vivo. Phosphorylated TFIIA was 30-fold more efficient in forming a stable complex with TBP and TATA DNA. Dephosphorylation of yeast-derived TFIIA reduced DNA binding activity, and recombinant TFIIA could be stimulated by in vitro phosphorylation with casein kinase II. Yeast strains expressing thetoa1 S220/225/232A showed reduced high-level transcriptional activity at the URA1, URA3, andHIS3 promoters but were viable. However, S220/225/232A was synthetically lethal when combined with an alanine substitution mutation at W285, which disrupts the TFIIA-TBP interface. Phosphorylation of TFIIA could therefore be an important mechanism of transcription modulation, since it stimulates TFIIA-TBP association, enhances high-level transcription, and contributes to yeast viability.


2001 ◽  
Vol 21 (4) ◽  
pp. 1404-1415 ◽  
Author(s):  
Gerald F. Sewack ◽  
Thomas W. Ellis ◽  
Ulla Hansen

ABSTRACT The TATA sequence of the human, estrogen-responsive pS2 promoter is complexed in vivo with a rotationally and translationally positioned nucleosome (NUC T). Using a chromatin immunoprecipitation assay, we demonstrate that TATA binding protein (TBP) does not detectably interact with this genomic binding site in MCF-7 cells in the absence of transcriptional stimuli. Estrogen stimulation of these cells results in hyperacetylation of both histones H3 and H4 within the pS2 chromatin encompassing NUC T and the TATA sequence. Concurrently, TBP becomes associated with the pS2 promoter region. The relationship between histone hyperacetylation and the binding of TBP was assayed in vitro using an in vivo-assembled nucleosomal array over the pS2 promoter. With chromatin in its basal state, the binding of TBP to the pS2 TATA sequence at the edge of NUC T was severely restricted, consistent with our in vivo data. Acetylation of the core histones facilitated the binding of TBP to this nucleosomal TATA sequence. Therefore, we demonstrate that one specific, functional consequence of induced histone acetylation at a native promoter is the alleviation of nucleosome-mediated repression of the binding of TBP. Our data support a fundamental role for histone acetylation at genomic promoters in transcriptional activation by nuclear receptors and provide a general mechanism for rapid and reversible transcriptional activation from a chromatin template.


Sign in / Sign up

Export Citation Format

Share Document