scholarly journals NC2α Interacts with BTAF1 and Stimulates Its ATP-Dependent Association with TATA-Binding Protein

2004 ◽  
Vol 24 (22) ◽  
pp. 10072-10082 ◽  
Author(s):  
Marcin P. Klejman ◽  
Lloyd A. Pereira ◽  
Hester J. T. van Zeeburg ◽  
Siv Gilfillan ◽  
Michael Meisterernst ◽  
...  

ABSTRACT Transcriptional activity of the TATA-binding protein (TBP) is controlled by a variety of proteins. The BTAF1 protein (formerly known as TAFII170/TAF-172 and the human ortholog of Saccharomyces cerevisiae Mot1p) and the NC2 complex composed of NC2α (DRAP1) and NC2β (Dr1) are able to bind to TBP directly and regulate RNA polymerase II transcription both positively and negatively. Here, we present evidence that the NC2α subunit interacts with BTAF1. In contrast, the NC2β subunit is not able to associate with BTAF1 and seems to interfere with the BTAF1-TBP interaction. Addition of NC2α or the NC2 complex can stimulate the ability of BTAF1 to interact with TBP. This function is dependent on the presence of ATP in cell extracts but does not involve the ATPase activity of BTAF1 nor phosphorylation of NC2α. Together, our results constitute the first evidence of the physical cooperation between BTAF1 and NC2α in TBP regulation and provide a framework to understand transcription functions of NC2α and NC2β in vivo.

1997 ◽  
Vol 17 (1) ◽  
pp. 287-295 ◽  
Author(s):  
J M Madison ◽  
F Winston

Spt3 of Saccharomyces cerevisiae is a factor required for normal transcription from particular RNA polymerase II-dependent promoters. Previous genetic and biochemical analyses have shown that Spt3 interacts with the yeast TATA-binding protein (TBP). To identify other factors that might interact with Spt3, we have screened for mutations that, in combination with an spt3 null mutation, lead to inviability. In this way, we have identified a mutation in MOT1, which encodes an ATP-dependent inhibitor of TBP binding to TATA boxes: Previous analyses suggested that Mot1 causes repression in vivo. However, our analysis of mot1 mutants shows that, similar to spt3 mutants, they have decreased levels of transcription from certain genes, suggesting that Mot1 may function as an activator in vivo. In addition, mot1 mutants have other phenotypes in common with spt3 delta mutants, including suppression of the insertion mutation his4-912 delta. Motivated by these Spt3-Mot1 genetic interactions, we tested for genetic interactions between Spt3 and the general transcription factor TFIIA. TFIIA has been shown previously to be functionally related to Mot1. We found that overexpression of TFIIA partially suppresses an spt3 delta mutation, that toa1 mutants have Spt-phenotypes, and that spt3 delta toa1 double mutants are inviable. We believe that, taken together, these data suggest that Spt3, Mot1, and TFIIA cooperate to regulate TBP-DNA interactions, perhaps at the level of TATA box selection in vivo.


1998 ◽  
Vol 18 (7) ◽  
pp. 3771-3781 ◽  
Author(s):  
Chi Li ◽  
James L. Manley

ABSTRACT The Drosophila homeodomain protein Even-skipped (Eve) is a transcriptional repressor, and previous studies have suggested that it functions by interfering with the basal transcription machinery. Here we describe experiments indicating that the mechanism of Eve repression involves a direct interaction with the TATA binding protein (TBP) that blocks binding of TBP-TFIID to the promoter. We first compared Eve activities in in vitro transcription systems reconstituted with either all the general transcription factors or only TBP, TFIIB, TFIIF30, and RNA polymerase II. In each case, equivalent and very efficient levels of repression were observed, indicating that no factors other than those in the minimal system are required for repression. We then show that Eve can function efficiently when its recognition sites are far from the promoter and that the same regions of Eve required for repression in vivo are necessary and sufficient for in vitro repression. This includes, in addition to an Ala-Pro-rich region, residues within the homeodomain. Using GAL4-Eve fusion proteins, we demonstrate that the homeodomain plays a role in repression in addition to DNA binding, which is to facilitate interaction with TBP. Single-round transcription experiments indicate that Eve must function prior to TBP binding to the promoter, suggesting a mechanism whereby Eve represses by competing with the TATA box for TBP binding. Consistent with this, excess TATA box-containing oligonucleotide is shown to specifically and efficiently disrupt the TBP-Eve interaction. Importantly, we show that Eve binds directly to TFIID and that this interaction can also be disrupted by the TATA oligonucleotide. We conclude that Eve represses transcription via a direct interaction with TBP that blocks TFIID binding to the promoter.


2001 ◽  
Vol 21 (5) ◽  
pp. 1737-1746 ◽  
Author(s):  
Susan M. Kraemer ◽  
Ryan T. Ranallo ◽  
Ryan C. Ogg ◽  
Laurie A. Stargell

ABSTRACT TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.


1996 ◽  
Vol 16 (6) ◽  
pp. 3206-3213 ◽  
Author(s):  
S M Roberts ◽  
F Winston

Mutations selected as suppressors of Ty and solo delta insertion mutations is Saccharomyces cerevisiae have identified a number of genes important for transcription initiation. One of these gens, SPT15, encodes the TATA-binding protein, and three others, SPT3, SPT7, and SPT8, encode proteins functionally related to the TATA-binding protein. To identify additional related functions, we have selected for new spt mutations. This work has identified one new gene, SPT20. Null mutations in SPT20 cause poor growth and a set of severe transcriptional defects very similar to those caused by null mutations in SPT3, SPT7, and SPT8 and also very similar to those caused by certain missense mutations in SPT15. Consistent with its having an important function in transcription in vivo, SPT20 was also recently identified as ADA5 and has been shown to be important for transcriptional activation (G.A. Marcus, J. Horiuchi, N. Silverman, and L. Guarente, Mol. Cell. Biol. 16:3197-3205, 1996.


2000 ◽  
Vol 20 (16) ◽  
pp. 5847-5857 ◽  
Author(s):  
Michael P. Ryan ◽  
Grace A. Stafford ◽  
Liuning Yu ◽  
Randall H. Morse

ABSTRACT Transcriptional activators are believed to work in part by recruiting general transcription factors, such as TATA-binding protein (TBP) and the RNA polymerase II holoenzyme. Activation domains also contribute to remodeling of chromatin in vivo. To determine whether these two activities represent distinct functions of activation domains, we have examined transcriptional activation and chromatin remodeling accompanying artificial recruitment of TBP in yeast (Saccharomyces cerevisiae). We measured transcription of reporter genes with defined chromatin structure by artificial recruitment of TBP and found that a reporter gene whose TATA element was relatively accessible could be activated by artificially recruited TBP, whereas two promoters, GAL10 and CHA1, that have accessible activator binding sites, but nucleosomal TATA elements, could not. A third reporter gene containing theHIS4 promoter could be activated by GAL4-TBP only when a RAP1 binding site was present, although RAP1 alone could not activate the reporter, suggesting that RAP1 was needed to open the chromatin structure to allow activation. Consistent with this interpretation, artificially recruited TBP was unable to perturb nucleosome positioning via a nucleosomal binding site, in contrast to a true activator such as GAL4, or to perturb the TATA-containing nucleosome at theCHA1 promoter. Finally, we show that activation of theGAL10 promoter by GAL4, which requires chromatin remodeling, can occur even in swi gcn5 yeast, implying that remodeling pathways independent of GCN5, the SWI-SNF complex, and TFIID can operate during transcriptional activation in vivo.


2002 ◽  
Vol 22 (24) ◽  
pp. 8744-8755 ◽  
Author(s):  
J. Vaughn Spencer ◽  
Karen M. Arndt

ABSTRACT The TATA-binding protein (TBP) nucleates the assembly and determines the position of the preinitiation complex at RNA polymerase II-transcribed genes. We investigated the importance of two conserved residues on the DNA binding surface of Saccharomyces cerevisiae TBP to DNA binding and sequence discrimination. Because they define a significant break in the twofold symmetry of the TBP-TATA interface, Ala100 and Pro191 have been proposed to be key determinants of TBP binding orientation and transcription directionality. In contrast to previous predictions, we found that substitution of an alanine for Pro191 did not allow recognition of a reversed TATA box in vivo; however, the reciprocal change, Ala100 to proline, resulted in efficient utilization of this and other variant TATA sequences. In vitro assays demonstrated that TBP mutants with the A100P and P191A substitutions have increased and decreased affinity for DNA, respectively. The TATA binding defect of TBP with the P191A mutation could be intragenically suppressed by the A100P substitution. Our results suggest that Ala100 and Pro191 are important for DNA binding and sequence recognition by TBP, that the naturally occurring asymmetry of Ala100 and Pro191 is not essential for function, and that a single amino acid change in TBP can lead to elevated DNA binding affinity and recognition of a reversed TATA sequence.


1993 ◽  
Vol 13 (2) ◽  
pp. 1232-1237
Author(s):  
M E Clark ◽  
P M Lieberman ◽  
A J Berk ◽  
A Dasgupta

Host cell RNA polymerase II (Pol II)-mediated transcription is inhibited by poliovirus infection. This inhibition is correlated to a specific decrease in the activity of a chromatographic fraction which contains the transcription factor TFIID. To investigate the mechanism by which poliovirus infection results in a decrease of TFIID activity, we have analyzed a component of TFIID, the TATA-binding protein (TBP). Using Western immunoblot analysis, we show that TBP is cleaved in poliovirus-infected cells at the same time postinfection as when Pol II transcription is inhibited. Further, we show that one of the cleaved forms of TBP can be reproduced in vitro by incubating TBP with cloned, purified poliovirus encoded protease 3C. Protease 3C is a poliovirus-encoded protease that specifically cleaves glutamine-glycine bonds in the viral polyprotein. The cleavage of TBP by protease 3C occurs directly. Finally, incubation of an uninfected cell-derived TBP-containing fraction (TFIID) with protease 3C results in significant inhibition of Pol II-mediated transcription in vitro. These results demonstrate that a cellular transcription factor can be directly cleaved both in vitro and in vivo by a viral protease and suggest a role of the poliovirus proteinase 3C in host cell Pol II-mediated transcription shutoff.


1996 ◽  
Vol 16 (11) ◽  
pp. 6436-6443 ◽  
Author(s):  
C W Lin ◽  
B Moorefield ◽  
J Payne ◽  
P Aprikian ◽  
K Mitomo ◽  
...  

We report the cloning of RRN11, a gene coding for a 66-kDa protein essential for transcription initiation by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Rrn11 specifically complexes with two previously identified transcription factors, Rrn6 and Rrn7 (D. A. Keys, J. S. Steffan, J. A. Dodd, R. T. Yamamoto, Y. Nogi, and M. Nomura, Genes Dev. 8:2349-2362, 1994). The Rrn11-Rrn6-Rrn7 complex also binds the TATA-binding protein and is required for transcription by the core domain of the Pol I promoter. Therefore, we have designated the Rrn11-Rrn6-Rrn7-TATA-binding protein complex the yeast Pol I core factor. A two-hybrid assay was used to demonstrate involvement of short leucine heptad repeats on both Rrn11 and Rrn6 in the in vivo association of these two proteins. This assay also verified the previously described strong association between Rrn6 and Rrn7, independent of the Rrn6 leucine repeat.


1990 ◽  
Vol 10 (5) ◽  
pp. 1915-1920 ◽  
Author(s):  
P A Kolodziej ◽  
N Woychik ◽  
S M Liao ◽  
R A Young

RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.


Sign in / Sign up

Export Citation Format

Share Document