scholarly journals Establishment and Maintenance of Genomic Methylation Patterns in Mouse Embryonic Stem Cells by Dnmt3a and Dnmt3b

2003 ◽  
Vol 23 (16) ◽  
pp. 5594-5605 ◽  
Author(s):  
Taiping Chen ◽  
Yoshihide Ueda ◽  
Jonathan E. Dodge ◽  
Zhenjuan Wang ◽  
En Li

ABSTRACT We have previously shown that the DNA methyltransferases Dnmt3a and Dnmt3b carry out de novo methylation of the mouse genome during early postimplantation development and of maternally imprinted genes in the oocyte. In the present study, we demonstrate that Dnmt3a and Dnmt3b are also essential for the stable inheritance, or “maintenance,” of DNA methylation patterns. Inactivation of both Dnmt3a and Dnmt3b in embryonic stem (ES) cells results in progressive loss of methylation in various repeats and single-copy genes. Interestingly, introduction of the Dnmt3a, Dnmt3a2, and Dnmt3b1 isoforms back into highly demethylated mutant ES cells restores genomic methylation patterns; these isoforms appear to have both common and distinct DNA targets, but they all fail to restore the maternal methylation imprints. In contrast, overexpression of Dnmt1 and Dnmt3b3 failed to restore DNA methylation patterns due to their inability to catalyze de novo methylation in vivo. We also show that hypermethylation of genomic DNA by Dnmt3a and Dnmt3b is necessary for ES cells to form teratomas in nude mice. These results indicate that genomic methylation patterns are determined partly through differential expression of different Dnmt3a and Dnmt3b isoforms.

2002 ◽  
Vol 22 (21) ◽  
pp. 7572-7580 ◽  
Author(s):  
Matthew C. Lorincz ◽  
Dirk Schübeler ◽  
Shauna R. Hutchinson ◽  
David R. Dickerson ◽  
Mark Groudine

ABSTRACT DNA methylation plays an important role in transcriptional repression. To gain insight into the dynamics of demethylation and de novo methylation, we introduced a proviral reporter, premethylated at different densities, into a defined chromosomal site in murine erythroleukemia cells and monitored the stability of the introduced methylation and reporter gene expression. A high density of methylation was faithfully propagated in vivo. In contrast, a low level of methylation was not stable, with complete demethylation and associated transcriptional activation or maintenance-coupled de novo methylation and associated silencing occurring with equal probability. Deletion of the proviral enhancer increased the probability of maintenance-coupled de novo methylation, suggesting that this enhancer functions in part to antagonize such methylation. The DNA methyltransferases (MTases) Dnmt3a and Dnmt3b are thought to be the sole de novo MTases in the mammalian genome. To determine whether these enzymes are responsible for maintenance-coupled de novo methylation, the unmethylated or premethylated proviral reporter was introduced into DNA MTase-deficient embryonic stem cells. These studies revealed the presence of a Dnmt3a/Dnmt3b-independent de novo methyltransferase activity that is stimulated by the presence of preexisting methylation.


2021 ◽  
Vol 118 (38) ◽  
pp. e2109475118
Author(s):  
Masaki Kinoshita ◽  
Meng Amy Li ◽  
Michael Barber ◽  
William Mansfield ◽  
Sabine Dietmann ◽  
...  

Genome remethylation is essential for mammalian development but specific reasons are unclear. Here we examined embryonic stem (ES) cell fate in the absence of de novo DNA methyltransferases. We observed that ES cells deficient for both Dnmt3a and Dnmt3b are rapidly eliminated from chimeras. On further investigation we found that in vivo and in vitro the formative pluripotency transition is derailed toward production of trophoblast. This aberrant trajectory is associated with failure to suppress activation of Ascl2. Ascl2 encodes a bHLH transcription factor expressed in the placenta. Misexpression of Ascl2 in ES cells provokes transdifferentiation to trophoblast-like cells. Conversely, Ascl2 deletion rescues formative transition of Dnmt3a/b mutants and improves contribution to chimeric epiblast. Thus, de novo DNA methylation safeguards against ectopic activation of Ascl2. However, Dnmt3a/b-deficient cells remain defective in ongoing embryogenesis. We surmise that multiple developmental transitions may be secured by DNA methylation silencing potentially disruptive genes.


2002 ◽  
Vol 22 (2) ◽  
pp. 480-491 ◽  
Author(s):  
Gangning Liang ◽  
Matilda F. Chan ◽  
Yoshitaka Tomigahara ◽  
Yvonne C. Tsai ◽  
Felicidad A. Gonzales ◽  
...  

ABSTRACT We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells.


Author(s):  
Lisa Männer ◽  
Tilman Schell ◽  
Panagiotis Provataris ◽  
Martin Haase ◽  
Carola Greve

Mollusca are the second largest and arguably most diverse phylum of the animal kingdom. This is in sharp contrast to our very limited knowledge concerning epigenetic mechanisms including DNA methylation in this invertebrate group. Here, we inferred DNA methylation patterns by analysing the normalized dinucleotide CG content in protein-coding sequences and identified DNA methyltransferases (DNMT1 and 3) in published transcriptomes and genomes of 140 species across all eight classes of molluscs. Given the evolutionary age and morphological diversity of molluscs, we expected to find evidence for diverse methylation patterns. Our inferences suggest that molluscs possess substantial levels of DNA methylation in gene bodies as a rule. Yet, we found deviations from this general picture with regard to (i) the CpG observed/expected distributions indicating a reduction in DNA methylation in certain groups and (ii) the completeness of the DNMT toolkit. Reductions were evident in Caudofoveata, Solenogastres, Polyplacophora, Monoplacophora, as well as Scaphopoda. Heterobranchia and Oegopsida were remarkable as they lacked DNMT3, usually responsible for de novo methylation, yet showed signs of DNA methylation. Our survey may serve as guidance for direct empirical analyses of DNA methylation in molluscs. This article is part of the Theo Murphy meeting issue ‘Molluscan genomics: broad insights and future directions for a neglected phylum’.


2020 ◽  
Author(s):  
Masaki Kinoshita ◽  
Meng Amy Li ◽  
Michael Barber ◽  
William Mansfield ◽  
Sabine Dietmann ◽  
...  

ABSTRACTGenome remethylation is essential for mammalian development. Here we examined cell fate in the absence of de novo DNA methyltransferases. We found that embryonic stem (ES) cells deficient for Dnmt3a and Dnmt3b are rapidly eliminated from chimaeras. Pluripotency progression is derailed towards extra-embryonic trophoblast. This aberrant trajectory is propelled by failure to methylate and suppress expression of Ascl2 during formative transition. Ascl2 deletion rescues transition and improves contribution to chimaeric epiblast but mutant cells are progressively lost in later development. These findings indicate that methylation constrains transcriptome trajectories during developmental transitions by silencing potentially disruptive genes.


2007 ◽  
Vol 27 (24) ◽  
pp. 8748-8759 ◽  
Author(s):  
Jing-Yu Li ◽  
Min-Tie Pu ◽  
Ryutaro Hirasawa ◽  
Bin-Zhong Li ◽  
Yan-Nv Huang ◽  
...  

ABSTRACT DNA methylation plays an important role in gene silencing in mammals. Two de novo methyltransferases, Dnmt3a and Dnmt3b, are required for the establishment of genomic methylation patterns in development. However, little is known about their coordinate function in the silencing of genes critical for embryonic development and how their activity is regulated. Here we show that Dnmt3a and Dnmt3b are the major components of a native complex purified from embryonic stem cells. The two enzymes directly interact and mutually stimulate each other both in vitro and in vivo. The stimulatory effect is independent of the catalytic activity of the enzyme. In differentiating embryonic carcinoma or embryonic stem cells and mouse postimplantation embryos, they function synergistically to methylate the promoters of the Oct4 and Nanog genes. Inadequate methylation caused by ablating Dnmt3a and Dnmt3b is associated with dysregulated expression of Oct4 and Nanog during the differentiation of pluripotent cells and mouse embryonic development. These results suggest that Dnmt3a and Dnmt3b form a complex through direct contact in living cells and cooperate in the methylation of the promoters of Oct4 and Nanog during cell differentiation. The physical and functional interaction between Dnmt3a and Dnmt3b represents a novel regulatory mechanism to ensure the proper establishment of genomic methylation patterns for gene silencing in development.


Author(s):  
Chuck Haggerty ◽  
Helene Kretzmer ◽  
Christina Riemenschneider ◽  
Abhishek Sampath Kumar ◽  
Alexandra L. Mattei ◽  
...  

AbstractDNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2853-2859 ◽  
Author(s):  
A. Weng ◽  
T. Magnuson ◽  
U. Storb

A murine transgene, HRD, is methylated only when carried in certain inbred strain backgrounds. A locus on distal chromosome 4, Ssm1 (strain-specific modifier), controls this phenomenon. In order to characterize the activity of Ssm1, we have investigated developmental acquisition of methylation over the transgene. Analysis of postimplantation embryos revealed that strain-specific methylation is initiated prior to embryonic day (E) 6.5. Strain-specific transgene methylation is all-or-none in pattern and occurs exclusively in the primitive ectoderm lineage. A strain-independent pattern of partial methylation occurs in the primitive endoderm and trophectoderm lineages. To examine earlier stages, embryonic stem (ES) cells were derived from E3.5 blastocysts and examined for transgene methylation before and after differentiation. Though the transgene had already acquired some methylation in undifferentiated ES cells, differentiation induced further, de novo methylation in a strain-dependent manner. Analysis of methylation in ES cultures suggests that the transgene and endogenous genes (such as immunoglobulin genes) are synchronously methylated during early development. These results are interpreted in the context of a model in which Ssm1-like modifier genes produce alterations in chromatin structure during and/or shortly after implantation, thereby marking target loci for de novo methylation with the rest of the genome during gastrulation.


2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2019 ◽  
Author(s):  
Luis Busto-Moner ◽  
Julien Morival ◽  
Arjang Fahim ◽  
Zachary Reitz ◽  
Timothy L. Downing ◽  
...  

AbstractDNA methylation is a heritable epigenetic modification that plays an essential role in mammalian development. Genomic methylation patterns are dynamically maintained, with DNA methyltransferases mediating inheritance of methyl marks onto nascent DNA over cycles of replication. A recently developed experimental technique employing immunoprecipitation of bromodeoxyuridine labeled nascent DNA followed by bisulfite sequencing (Repli-BS) measures post-replication temporal evolution of cytosine methylation, thus enabling genome-wide monitoring of methylation maintenance. In this work, we combine statistical analysis and stochastic mathematical modeling to analyze Repli-BS data from human embryonic stem cells. We estimate site-specific kinetic rate constants for the restoration of methyl marks on >10 million uniquely mapped cytosines within the CpG (cytosine-phosphate-guanine) dinucleotide context across the genome using Maximum Likelihood Estimation. We find that post-replication remethylation rate constants span approximately two orders of magnitude, with half-lives of per-site recovery of steady-state methylation levels ranging from shorter than ten minutes to five hours and longer. Furthermore, we find that kinetic constants of maintenance methylation are correlated among neighboring CpG sites. Stochastic mathematical modeling provides insight to the biological mechanisms underlying the inference results, suggesting that enzyme processivity and/or collaboration can produce the observed kinetic correlations. Our combined statistical/mathematical modeling approach expands the utility of genomic datasets and disentangles heterogeneity in methylation patterns arising from replication-associated temporal dynamics versus stable cell-to-cell differences.


Sign in / Sign up

Export Citation Format

Share Document