scholarly journals Association between Hepatocyte Nuclear Factor 6 (HNF-6) and FoxA2 DNA Binding Domains Stimulates FoxA2 Transcriptional Activity but Inhibits HNF-6 DNA Binding

2003 ◽  
Vol 23 (2) ◽  
pp. 437-449 ◽  
Author(s):  
Francisco M. Rausa ◽  
Yongjun Tan ◽  
Robert H. Costa

ABSTRACT In previous studies we used transgenic mice or recombinant adenovirus infection to increase hepatic expression of forkhead box A2 (FoxA2, previously called hepatocyte nuclear factor 3β [HNF-3β]), which caused diminished hepatocyte glycogen levels and reduced expression of glucose homeostasis genes. Because this diminished expression of FoxA2 target genes was associated with reduced levels of the Cut-Homeodomain HNF-6 transcription factor, we conducted the present study to determine whether there is a functional interaction between HNF-6 and FoxA2. Human hepatoma (HepG2) cotransfection assays demonstrated that HNF-6 synergistically stimulated FoxA2 but not FoxA1 or FoxA3 transcriptional activity, and protein-binding assays showed that this protein interaction required the HNF-6 Cut-Homeodomain and FoxA2 winged-helix DNA binding domains. Furthermore, we show that the HNF-6 Cut-Homeodomain sequences were sufficient to synergistically stimulate FoxA2 transcriptional activation by recruiting the p300/CBP coactivator proteins. This was supported by the fact that FoxA2 transcriptional synergy with HNF-6 was dependent on retention of the HNF-6 Cut domain LXXLL sequence, which mediated recruitment of the p300/CBP proteins. Moreover, cotransfection and DNA binding assays demonstrated that increased FoxA2 levels caused a decrease in HNF-6 transcriptional activation of the glucose transporter 2 (Glut-2) promoter by interfering with the binding of HNF-6 to its target DNA sequence. These data suggest that at a FoxA-specific site, HNF-6 serves as a coactivator protein to enhance FoxA2 transcription, whereas at an HNF-6-specific site, FoxA2 represses HNF-6 transcription by inhibiting HNF-6 DNA binding activity. This is the first reported example of a liver-enriched transcription factor (HNF-6) functioning as a coactivator protein to potentiate the transcriptional activity of another liver factor, FoxA2.

1992 ◽  
Vol 103 (1) ◽  
pp. 9-14 ◽  
Author(s):  
K.A. Lee

Dimeric transcription factors that bind to DNA are often grouped into families on the basis of dimerization and DNA-binding specificities. cDNA cloning studies have established that members of the same family have structurally related dimerisation and DNA-binding domains but diverge in other regions that are important for transcriptional activation. These features lead to the straightforward suggestion that although all members of a family bind to similar DNA elements, individual members exhibit distinct transcriptional effector functions. This simple view is now supported by experimental evidence from those systems that have proved amenable to study. There are however some largely unaddressed questions that concern the mechanisms that allow family members to go about their business without interference from their highly related siblings. Here I will discuss some insights from studies of the bZIP class of transcription factors.


2004 ◽  
Vol 383 (3) ◽  
pp. 573-580 ◽  
Author(s):  
Bénédicte OXOMBRE ◽  
Mostafa KOUACH ◽  
Ericka MOERMAN ◽  
Pierre FORMSTECHER ◽  
Bernard LAINE

HNF4α (hepatocyte nuclear factor 4α) belongs to a complex transcription factor network that is crucial for the function of hepatocytes and pancreatic β-cells. In these cells, it activates the expression of a very large number of genes, including genes involved in the transport and metabolism of glucose and lipids. Mutations in the HNF4α gene correlate with MODY1 (maturity-onset diabetes of the young 1), a form of type II diabetes characterized by an impaired glucose-induced insulin secretion. The MODY1 G115S (Gly115→Ser) HNF4α mutation is located in the DNA-binding domain of this nuclear receptor. We show here that the G115S mutation failed to affect HNF4α-mediated transcription on apolipoprotein promoters in HepG2 cells. Conversely, in pancreatic β-cell lines, this mutation resulted in strong impairments of HNF4α transcriptional activity on the promoters of LPK (liver pyruvate kinase) and HNF1α, with this transcription factor playing a key role in endocrine pancreas. We show as well that the G115S mutation creates a PKA (protein kinase A) phosphorylation site, and that PKA-mediated phosphorylation results in a decreased transcriptional activity of the mutant. Moreover, the G115E (Gly115→Glu) mutation mimicking phosphorylation reduced HNF4α DNA-binding and transcriptional activities. Our results may account for the 100% penetrance of diabetes in human carriers of this mutation. In addition, they suggest that introduction of a phosphorylation site in the DNA-binding domain may represent a new mechanism by which a MODY1 mutation leads to loss of HNF4α function.


2003 ◽  
Vol 278 (25) ◽  
pp. 22586-22595 ◽  
Author(s):  
Alpana Ray ◽  
Papiya Ray ◽  
Nicole Guthrie ◽  
Arvind Shakya ◽  
Deepak Kumar ◽  
...  

1999 ◽  
Vol 19 (6) ◽  
pp. 3931-3939 ◽  
Author(s):  
Brigitte Bourachot ◽  
Moshe Yaniv ◽  
Christian Muchardt

ABSTRACT The mammalian SWI-SNF complex is a chromatin-remodelling machinery involved in the modulation of gene expression. Its activity relies on two closely related ATPases known as brm/SNF2α and BRG-1/SNF2β. These two proteins can cooperate with nuclear receptors for transcriptional activation. In addition, they are involved in the control of cell proliferation, most probably by facilitating p105Rb repression of E2F transcriptional activity. In the present study, we have examined the ability of various brm/SNF2α deletion mutants to reverse the transformed phenotype ofras-transformed fibroblasts. Deletions within the p105Rb LXCXE binding motif or the conserved bromodomain had only a moderate effect. On the other hand, a 49-amino-acid segment, rich in lysines and arginines and located immediately downstream of the p105Rb interaction domain, appeared to be essential in this assay. This region was also required for cooperation of brm/SNF2α with the glucocorticoid receptor in transfection experiments, but only in the context of a reporter construct integrated in the cellular genome. The region has homology to the AT hooks present in high-mobility-group protein I/Y DNA binding domains and is required for the tethering of brm/SNF2α to chromatin.


2004 ◽  
Vol 89 (3) ◽  
pp. 1369-1378 ◽  
Author(s):  
Sachiko Kitanaka ◽  
Yuko Miki ◽  
Yasuhide Hayashi ◽  
Takashi Igarashi

Abstract Mutations in the hepatocyte nuclear factor (HNF)-1β lead to type 5 maturity-onset diabetes of the young (MODY5). HNF-1β forms a homodimer or a heterodimer with HNF-1α and regulates various target genes. HNF-1β mutations are rare, and no functional analysis has been performed in conjunction with HNF-1α. HNF-1β is expressed in the liver and biliary system and controls liver-specific and bile acid-related genes. Moreover, liver-specific Hnf-1β knockout mice present with severe jaundice. However, no patients with HNF-1β mutations have biliary manifestations. In this report, we found a novel missense mutation in the HNF-1β gene in a patient with neonatal cholestasis and liver dysfunction together with the common features of MODY5. Functional analysis revealed that the mutant HNF-1β had diminished transcriptional activity by loss of the DNA binding activity. The mutant had a promoter-specific dominant-negative transcriptional effect on wild-type HNF-1β and inhibited its DNA binding. Moreover, the mutant had a promoter- and cell-specific transcriptional repressive effect on HNF-1α and a promoter-specific inhibitory effect on HNF-1α DNA binding. From these results, we considered that the different phenotype of patients with HNF-1β mutations might be caused by the different HNF-1β activity in conjunction with the different repression of HNF-1α activity in selected promoters and tissues.


1995 ◽  
Vol 15 (3) ◽  
pp. 1522-1535 ◽  
Author(s):  
W J Fredericks ◽  
N Galili ◽  
S Mukhopadhyay ◽  
G Rovera ◽  
J Bennicelli ◽  
...  

Alveolar rhabdomyosarcomas are pediatric solid tumors with a hallmark cytogenetic abnormality: translocation of chromosomes 2 and 13 [t(2;13) (q35;q14)]. The genes on each chromosome involved in this translocation have been identified as the transcription factor-encoding genes PAX3 and FKHR. The NH2-terminal paired box and homeodomain DNA-binding domains of PAX3 are fused in frame to COOH-terminal regions of the chromosome 13-derived FKHR gene, a novel member of the forkhead DNA-binding domain family. To determine the role of the fusion protein in transcriptional regulation and oncogenesis, we identified the PAX3-FKHR fusion protein and characterized its function(s) as a transcription factor relative to wild-type PAX3. Antisera specific to PAX3 and FKHR were developed and used to examine PAX3 and PAX3-FKHR expression in tumor cell lines. Sequential immunoprecipitations with anti-PAX3 and anti-FKHR sera demonstrated expression of a 97-kDa PAX3-FKHR fusion protein in the t(2;13)-positive rhabdomyosarcoma Rh30 cell line and verified that a single polypeptide contains epitopes derived from each protein. The PAX3-FKHR protein was localized to the nucleus in Rh30 cells, as was wild-type PAX3, in t(2;13)-negative A673 cells. In gel shift assays using a canonical PAX binding site (e5 sequence), we found that DNA binding of PAX3-FKHR was significantly impaired relative to that of PAX3 despite the two proteins having identical PAX DNA-binding domains. However, the PAX3-FKHR fusion protein was a much more potent transcriptional activator than PAX3 as determined by transient cotransfection assays using e5-CAT reporter plasmids. The PAX3-FKHR protein may function as an oncogenic transcription factor by enhanced activation of normal PAX3 target genes.


2022 ◽  
Author(s):  
Chelsea L Blankenchip ◽  
Justin V Nguyen ◽  
Rebecca K Lau ◽  
Qiaozhen Ye ◽  
Yajie Gu ◽  
...  

Bacteria use diverse immune systems to defend themselves from ubiquitous viruses termed bacteriophages (phages). Many anti-phage systems function by abortive infection to kill a phage-infected cell, raising the question of how these systems are regulated to avoid activation and cell killing outside the context of infection. Here, we identify a transcription factor associated with the widespread CBASS bacterial immune system, that we term CapW. CapW forms a homodimer and binds a palindromic DNA sequence in the CBASS promoter region. Two crystal structures of CapW reveal how the protein switches from a DNA binding-competent state to a ligand-bound state that cannot bind DNA due to misalignment of dimer-related DNA binding domains. We show that CapW strongly represses CBASS gene expression in uninfected cells, and that CapW disruption likely results in toxicity due to uncontrolled CBASS expression. Our results parallel recent findings with BrxR, a transcription factor associated with the BREX anti-phage system, and suggest that CapW and BrxR are the founding members of a family of universal anti-phage signaling proteins.


Sign in / Sign up

Export Citation Format

Share Document