scholarly journals C-Terminal Anchoring of mid1p to Membranes Stabilizes Cytokinetic Ring Position in Early Mitosis in Fission Yeast

2004 ◽  
Vol 24 (24) ◽  
pp. 10621-10635 ◽  
Author(s):  
Séverine Celton-Morizur ◽  
Nicole Bordes ◽  
Vincent Fraisier ◽  
Phong T. Tran ◽  
Anne Paoletti

ABSTRACT mid1p is a key factor for the central positioning of the cytokinetic ring in Schizosaccharomyces pombe. In interphase and early mitosis, mid1p forms a medial cortical band overlying the nucleus, which may represent a landmark for cytokinetic ring assembly. It compacts before anaphase into a tight ring with other cytokinetic ring components. We show here that mid1p binds to the medial cortex by at least two independent means. First, mid1p C-terminus association with the cortex requires a putative amphipathic helix adjacent to mid1p nuclear localization sequence (NLS), which is predicted to insert directly into the lipid bilayer. This association is stabilized by the polybasic NLS. mid1p mutated within the helix and the NLS forms abnormal filaments in early mitosis that are not properly anchored to the medial cortex. Misplaced rings assemble in late mitosis, indicating that mid1p C-terminus binding to membranes stabilizes cytokinetic ring position. Second, the N terminus of mid1p has the ability to associate faintly with the medial cortex and is sufficient to form tight rings. In addition, we show that mid1p oligomerizes. We propose that membrane-bound oligomers of mid1p assemble recruitment “platforms” for cytokinetic ring components at the medial cortex and stabilize the ring position during its compaction.

2010 ◽  
Vol 24 (6) ◽  
pp. 1947-1957 ◽  
Author(s):  
Ramiro E. Toribio ◽  
Holly A. Brown ◽  
Chad M. Novince ◽  
Brandlyn Marlow ◽  
Krista Hernon ◽  
...  

Endocrinology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Wen Sun ◽  
Jun Wu ◽  
Linying Huang ◽  
Hong Liu ◽  
Rong Wang ◽  
...  

Abstract To determine whether the action of the PTHrP nuclear localization sequence and C terminus is mediated through p27 in modulating dental and mandibular development, compound mutant mice, which are homozygous for both p27 deletion and the PTHrP1–84 knock-in mutation (p27−/−PthrpKI/KI), were generated. Their teeth and mandibular phenotypes were compared with those of p27−/−, PthrpKUK\ and wild-type mice. At 2 weeks of age, the mandibular mineral density, alveolar bone volume, osteoblast numbers, and dental volume, dentin sialoprotein-immunopo-sitive areas in the first molar were increased significantly in p27−/− mice and decreased dramatically in both PthrpKI/KI and p27−/− PthrpKI/KI mice compared with wild-type mice; however, these parameters were partly rescued in p27−/− PthrpKI/KI mice compared with PthrpKI/KI mice. These data demonstrate that the deletion of p27 in PthrpKI/KI mice can partially rescue defects in dental and mandibular development. Furthermore, we found that deletion of p27 in PthrpKI/KI mice partially corrected the dental and mandibular phenotype by modulating cell cyclin-regulating molecules and antioxidant enzymes. This study therefore indicates that the p27 pathway may function downstream in the action of PTHrP nuclear localization sequence to regulate dental and mandibular development. (Endocrinology 157: 1372–1384, 2016)


2001 ◽  
Vol 114 (24) ◽  
pp. 4599-4611 ◽  
Author(s):  
Nicholas P. Edgington ◽  
Bruce Futcher

The Saccharomyces cerevisiae cyclin-dependent kinase Cdc28 forms complexes with nine different cyclins to promote cell division. These nine cyclin-Cdc28 complexes have different roles, but share the same catalytic subunit; thus, it is not clear how substrate specificity is achieved. One possible mechanism is specific sub-cellular localization of specific complexes. We investigated the location of two G1 cyclins using fractionation and microscopy. In addition, we developed ‘forced localization’ cassettes, which direct proteins to particular locations, to test the importance of localization. Cln2 was found in both nucleus and cytoplasm. A substrate of Cln2, Sic1, was also in both compartments. Cytoplasmic Cln2 was concentrated at sites of polarized growth. Forced localization showed that some functions of Cln2 required a cytoplasmic location, while other functions required a nuclear location. In addition, one function apparently required shuttling between the two compartments. The G1 cyclin Cln3 required nuclear localization. An autonomous, nuclear localization sequence was found near the C-terminus of Cln3. Our data supports the hypothesis that Cln2 and Cln3 have distinct functions and locations, and the specificity of cyclin-dependent kinases is mediated in part by subcellular location.


1993 ◽  
Vol 4 (12) ◽  
pp. 1239-1250 ◽  
Author(s):  
L Créancier ◽  
H Prats ◽  
C Zanibellato ◽  
F Amalric ◽  
B Bugler

Nucleolin (713 aa), a major nucleolar protein, presents two structural domains: a N-terminus implicated in interaction with chromatin and a C-terminus containing four RNA-binding domains (RRMs) and a glycine/arginine-rich domain mainly involved in pre-rRNA packaging. Furthermore, nucleolin was shown to shuttle between cytoplasm and nucleolus. To get an insight on the nature of nuclear and nucleolar localization signals, a set of nucleolin deletion mutants in fusion with the prokaryotic chloramphenicol acetyltransferase (CAT) were constructed, and the resulting chimeric proteins were recognized by anti-CAT antibodies. First, a nuclear location signal bipartite and composed of two short basic stretches separated by eleven residues was characterized. Deletion of either motifs renders the protein cytoplasmic. Second, by deleting one or more domains implicated in nucleolin association either with DNA, RNA, or proteins, we demonstrated that nucleolar accumulation requires, in addition to the nuclear localization sequence, at least two of the five RRMs in presence or absence of N-terminus. However, in presence of only one RRM the N-terminus allowed a partial targeting of the chimeric protein to the nucleolus.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 159-173 ◽  
Author(s):  
M K Nelson ◽  
T Kurihara ◽  
P A Silver

Abstract Mutations in the SEC63 gene of Saccharomyces cerevisiae affect both nuclear protein localization and translocation of proteins into the endoplasmic reticulum. We now report the isolation of suppressors of sec63-101 (formerly npl1-1), a temperature-sensitive allele of SEC63. Five complementation groups of extragenic mutations, son1-son5 (suppressor of npl1-1), were identified among the recessive suppressors. The son mutations are specific to SEC63, are not bypass suppressors, and are not new alleles of previously identified secretory (SEC61, SEC62, KAR2) or nuclear protein localization genes (NPL3, NPL4, NPL6). son1 mutations show regional specificity of suppression of sec63 alleles. At low temperatures, son1 mutants grow slowly and show partial mislocalization of nuclear antigens. The SON1 gene maps to chromosome IV and encodes a nuclear protein of 531 amino acids that contains two acidic stretches and a putative nuclear localization sequence. We show that son1 mutations suppress sec63-101 by elimination of Son1p function.


2017 ◽  
Vol 114 (38) ◽  
pp. 10274-10279 ◽  
Author(s):  
Fan Zhang ◽  
Likai Wang ◽  
Bin Qi ◽  
Bo Zhao ◽  
Eun Esther Ko ◽  
...  

Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac ofein2-5at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.


2008 ◽  
Vol 181 (3) ◽  
pp. 485-496 ◽  
Author(s):  
David Michaelson ◽  
Wasif Abidi ◽  
Daniele Guardavaccaro ◽  
Mo Zhou ◽  
Ian Ahearn ◽  
...  

Rac1 regulates a wide variety of cellular processes. The polybasic region of the Rac1 C terminus functions both as a plasma membrane–targeting motif and a nuclear localization sequence (NLS). We show that a triproline N-terminal to the polybasic region contributes to the NLS, which is cryptic in the sense that it is strongly inhibited by geranylgeranylation of the adjacent cysteine. Subcellular fractionation demonstrated endogenous Rac1 in the nucleus and Triton X-114 partition revealed that this pool is prenylated. Cell cycle–blocking agents, synchronization of cells stably expressing low levels of GFP-Rac1, and time-lapse microscopy of asynchronous cells revealed Rac1 accumulation in the nucleus in late G2 and exclusion in early G1. Although constitutively active Rac1 restricted to the cytoplasm inhibited cell division, activated Rac1 expressed constitutively in the nucleus increased the mitotic rate. These results show that Rac1 cycles in and out of the nucleus during the cell cycle and thereby plays a role in promoting cell division.


Sign in / Sign up

Export Citation Format

Share Document