scholarly journals Identifying a species-specific region of yeast TF11B in vivo.

1996 ◽  
Vol 16 (7) ◽  
pp. 3651-3657 ◽  
Author(s):  
S P Shaw ◽  
J Wingfield ◽  
M J Dorsey ◽  
J Ma

The general transcription factor IIB (TFIIB) is required for RNA polymerase II transcription in eukaryotes. It provides a physical link between the TATA-binding protein (TBP) and the RNA polymerase and is a component previously suggested to respond to transcriptional activators in vitro. In this report, we compare the yeast (Saccharomyces cerevisiae) and human forms of the protein in yeast cells to study their functional differences. We demonstrate that human TFIIB fails to functionally replace yeast TFIIB in yeast cells. By analyzing various human-yeast hybrid TFIIB molecules, we show that a 14-amino-acid region at the amino terminus of the first repeat of yeast TFIIB plays an important role in determining species specificity in vivo. In addition, we identify four amino acids in this region that are critical for an amphipathic helix unique to yeast TFIIB. By site-directed mutagenesis analyses we demonstrate that these four amino acids are important for yeast TFIIB's activity in vivo. Finally, we show that mutations in the species-specific region of yeast TFIIB can differentially affect the expression of genes activated by different activators in vivo. These results provide strong evidence suggesting that yeast TFIIB is involved in the process of transcriptional activation in living cells.

1997 ◽  
Vol 17 (8) ◽  
pp. 4622-4632 ◽  
Author(s):  
Y C Lee ◽  
S Min ◽  
B S Gim ◽  
Y J Kim

A temperature-sensitive mutation was obtained in Med6p, a component of the mediator complex from the yeast Saccharomyces cerevisiae. The mediator complex has been shown to enable transcriptional activation in vitro. This mutation in Med6p abolished activation of transcription from four of five inducible promoters tested in vivo. There was no effect, however, on uninduced transcription, transcription of constitutively expressed genes, or transcription by RNA polymerases I and III. Mediator-RNA polymerase II complex isolated from the mutant yeast strain was temperature sensitive for transcriptional activation in a reconstituted in vitro system due to a defect in initiation complex formation. A database search revealed the existence of MED6-related genes in humans and Caenorhabditis elegans, suggesting that the role of mediator in transcriptional activation is conserved throughout the evolution.


1987 ◽  
Vol 7 (10) ◽  
pp. 3799-3805
Author(s):  
P J Schatz ◽  
G E Georges ◽  
F Solomon ◽  
D Botstein

Microtubules in yeasts are essential components of the mitotic and meiotic spindle and are necessary for nuclear movement during cell division and mating. The yeast Saccharomyces cerevisiae has two alpha-tubulin genes, TUB1 and TUB3, either of which alone is sufficient for these processes when present in a high enough copy number. Comparisons of sequences from several species reveals the presence of a variable region near the amino terminus of alpha-tubulin proteins. We perturbed the structure of this region in TUB3 by inserting into it 3, 9, or 17 amino acids and tested the ability of these altered proteins to function as the only alpha-tubulin protein in yeast cells. We found that each of these altered proteins was sufficient on its own for mitotic growth, mating, and methods of yeast. We conclude that this region can tolerate considerable variation without losing any of the highly conserved functions of alpha-tubulin. Our results suggest that variability in this region occurs because it can be tolerated, not because it specifies an important function for the protein.


2004 ◽  
Vol 24 (24) ◽  
pp. 10975-10985 ◽  
Author(s):  
Mohamed A. Ghazy ◽  
Seth A. Brodie ◽  
Michelle L. Ammerman ◽  
Lynn M. Ziegler ◽  
Alfred S. Ponticelli

ABSTRACT Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.


2014 ◽  
Vol 92 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Roshini N. Wimalarathna ◽  
Po Yun Pan ◽  
Chang-Hui Shen

In yeast, Ace1p-dependent induction of CUP1 is responsible for protecting cells from copper toxicity. Although the mechanism of yeast CUP1 induction has been studied intensively, it is still uncertain which chromatin remodelers are involved in CUP1 transcriptional activation. Here, we show that yeast cells are inviable in the presence of copper when either chromatin remodeler, Ino80p or Snf2p, is not present. This inviability is due to the lack of CUP1 expression in ino80Δ and snf2Δ cells. Subsequently, we observe that both Ino80p and Snf2p are present at the promoter and they are responsible for recruiting chromatin remodeling activity to the CUP1 promoter under induced conditions. These results suggest that they directly participate in CUP1 transcriptional activation. Furthermore, the codependent recruitment of both INO80 and SWI/SNF depends on the presence of the transcriptional activator, Ace1p. We also demonstrate that both remodelers are required to recruit RNA polymerase II and targeted histone acetylation, indicating that remodelers are recruited to the CUP1 promoter before RNA polymerase II and histone acetylases. These observations provide evidence for the mechanism of CUP1 induction. As such, we propose a model that describes novel insight into the order of events in CUP1 activation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1992 ◽  
Vol 12 (9) ◽  
pp. 4015-4025
Author(s):  
R H Morse ◽  
S Y Roth ◽  
R T Simpson

Incorporation into a positioned nucleosome of a cis-acting element essential for replication in Saccharomyces cerevisiae disrupts the function of the element in vivo [R. T. Simpson, Nature (London) 343:387-389, 1990]. Furthermore, nucleosome positioning has been implicated in repression of transcription by RNA polymerase II in yeast cells. We have now asked whether the function of cis-acting elements essential for transcription of a gene transcribed by RNA polymerase III can be similarly affected. A tRNA gene was fused to either of two nucleosome positioning signals such that the predicted nucleosome would incorporate near its center the tRNA start site and essential A-box element. These constructs were then introduced into yeast cells on stably maintained, multicopy plasmids. Competent tRNA genes were transcribed in vivo and were not incorporated into positioned nucleosomes. Mutated, inactive tRNA genes were incorporated into nucleosomes whose positions were as predicted. This finding demonstrates that the transcriptional competence of the tRNA gene determined its ability to override a nucleosome positioning signal in vivo and establishes that a hierarchy exists between cis-acting elements and nucleosome positioning signals.


2001 ◽  
Vol 21 (8) ◽  
pp. 2736-2742 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Frank C. Holstege ◽  
Richard A. Young ◽  
Kevin Struhl

ABSTRACT NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiaegenes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo.


1998 ◽  
Vol 18 (5) ◽  
pp. 2876-2883 ◽  
Author(s):  
Song He ◽  
Steven Jay Weintraub

ABSTRACT Recently, it was found that if either the TATA binding protein or RNA polymerase II holoenzyme is artificially tethered to a promoter, transcription is activated. This finding provided presumptive evidence that upstream activating proteins function by recruiting components of the preinitiation complex (PIC) to the promoter. To date, however, there have been no studies demonstrating that upstream factors actually recruit components of the PIC to the promoter in vivo. Therefore, we have studied the mechanism of action of two disparate transactivating domains. We present a series of in vivo functional assays that demonstrate that each of these proteins targets different components of the PIC for recruitment. We show that, by targeting different components of the PIC for recruitment, these activating domains can cooperate with each other to activate transcription synergistically and that, even within one protein, two different activating subdomains can activate transcription synergistically by cooperating to recruit different components of the PIC. Finally, considering our work together with previous studies, we propose that certain transcription factors both recruit components of the PIC and facilitate steps in transcriptional activation that occur subsequent to recruitment.


2000 ◽  
Vol 20 (12) ◽  
pp. 4350-4358 ◽  
Author(s):  
David R. Dorris ◽  
Kevin Struhl

ABSTRACT In yeast cells, transcriptional activation occurs when the RNA polymerase II (Pol II) machinery is artificially recruited to a promoter by fusing individual components of this machinery to a DNA-binding domain. Here, we show that artificial recruitment of components of the TFIID complex can activate transcription in mammalian cells. Surprisingly, artificial recruitment of TATA-binding protein (TBP) activates transiently transfected and chromosomally integrated promoters with equal efficiency, whereas artificial recruitment of TBP-associated factors activates only chromosomal reporters. In contrast, artificial recruitment of various components of the mammalian Pol II holoenzyme does not confer transcriptional activation, nor does it result in synergistic activation in combination with natural activation domains. In the one case examined in more detail, the Srb7 fusion failed to activate despite being associated with the Pol II holoenzyme and being directly recruited to the promoter. Interestingly, some acidic activation domains are less effective when the promoter is chromosomally integrated rather than transiently transfected, whereas the Sp1 glutamine-rich activation domain is more effective on integrated reporters. Thus, yeast and mammalian cells differ with respect to transcriptional activation by artificial recruitment of the Pol II holoenzyme.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


Sign in / Sign up

Export Citation Format

Share Document