scholarly journals Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities

2004 ◽  
Vol 24 (8) ◽  
pp. 3198-3212 ◽  
Author(s):  
Jorge Z. Torres ◽  
Sandra L. Schnakenberg ◽  
Virginia A. Zakian

ABSTRACT Rrm3p is a 5′-to-3′ DNA helicase that helps replication forks traverse protein-DNA complexes. Its absence leads to increased fork stalling and breakage at over 1,000 specific sites located throughout the Saccharomyces cerevisiae genome. To understand the mechanisms that respond to and repair rrm3-dependent lesions, we carried out a candidate gene deletion analysis to identify genes whose mutation conferred slow growth or lethality on rrm3 cells. Based on synthetic phenotypes, the intra-S-phase checkpoint, the SRS2 inhibitor of recombination, the SGS1/TOP3 replication fork restart pathway, and the MRE11/RAD50/XRS2 (MRX) complex were critical for viability of rrm3 cells. DNA damage checkpoint and homologous recombination genes were important for normal growth of rrm3 cells. However, the MUS81/MMS4 replication fork restart pathway did not affect growth of rrm3 cells. These data suggest a model in which the stalled and broken forks generated in rrm3 cells activate a checkpoint response that provides time for fork repair and restart. Stalled forks are converted by a Rad51p-mediated process to intermediates that are resolved by Sgs1p/Top3p. The rrm3 system provides a unique opportunity to learn the fate of forks whose progress is impaired by natural impediments rather than by exogenous DNA damage.

2008 ◽  
Vol 19 (10) ◽  
pp. 4374-4382 ◽  
Author(s):  
Ling Yin ◽  
Alexandra Monica Locovei ◽  
Gennaro D'Urso

In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


2004 ◽  
Vol 15 (9) ◽  
pp. 4051-4063 ◽  
Author(s):  
Kaila L. Schollaert ◽  
Julie M. Poisson ◽  
Jennifer S. Searle ◽  
Jennifer A. Schwanekamp ◽  
Craig R. Tomlinson ◽  
...  

Replication blocks and DNA damage incurred during S phase activate the S-phase and intra-S-phase checkpoint responses, respectively, regulated by the Atrp and Chk1p checkpoint kinases in metazoans. In Saccharomyces cerevisiae, these checkpoints are regulated by the Atrp homologue Mec1p and the kinase Rad53p. A conserved role of these checkpoints is to block mitotic progression until DNA replication and repair are completed. In S. cerevisiae, these checkpoints include a transcriptional response regulated by the kinase Dun1p; however, dun1Δ cells are proficient for the S-phase-checkpoint-induced anaphase block. Yeast Chk1p kinase regulates the metaphase-to-anaphase transition in the DNA-damage checkpoint pathway via securin (Pds1p) phosphorylation. However, like Dun1p, yeast Chk1p is not required for the S-phase-checkpoint-induced anaphase block. Here we report that Chk1p has a role in the intra-S-phase checkpoint activated when yeast cells replicate their DNA in the presence of low concentrations of hydroxyurea (HU). Chk1p was modified and Pds1p was transiently phosphorylated in this response. Cells lacking Dun1p were dependent on Chk1p for survival in HU, and chk1Δ dun1Δ cells were defective in the recovery from replication interference caused by transient HU exposure. These studies establish a relationship between the S-phase and DNA-damage checkpoint pathways in S. cerevisiae and suggest that at least in some genetic backgrounds, the Chk1p/securin pathway is required for the recovery from stalled or collapsed replication forks.


2004 ◽  
Vol 279 (19) ◽  
pp. 20067-20075 ◽  
Author(s):  
Catherine J. Merrick ◽  
Dean Jackson ◽  
John F. X. Diffley

Eukaryotic cells respond to DNA damage within the S phase by activating an intra-S checkpoint: a response that includes reducing the rate of DNA synthesis. In yeast cells this can occur via checkpoint-dependent inhibition of origin firing and stabilization of ongoing forks, together with a checkpoint-independent slowing of fork movement. In higher eukaryotes, however, the mechanism by which DNA synthesis is reduced is less clear. We have developed strategies based on DNA fiber labeling that allow the quantitative assessment of rates of replication fork movement, origin firing, and fork stalling throughout the genome by examining large numbers of individually labeled replication forks. We show that exposing S phase cells to ionizing radiation induces a transient block to origin firing but does not affect fork rate or fork stalling. Alkylation damage by methyl methane sulfonate causes a slowing of fork movement and a high rate of fork stalling, in addition to inducing a block to new origin firing. Nucleotide depletion by hydroxyurea also reduces replication fork rate and increases stalling; moreover, in contrast to a recent report, we show that hydroxyurea induces a strong block to new origin firing. The DNA fiber labeling strategy provides a powerful new approach to analyze the dynamics of DNA replication in a perturbed S phase.


2006 ◽  
Vol 26 (22) ◽  
pp. 8396-8409 ◽  
Author(s):  
Kristina Herzberg ◽  
Vladimir I. Bashkirov ◽  
Michael Rolfsmeier ◽  
Edwin Haghnazari ◽  
W. Hayes McDonald ◽  
...  

ABSTRACT DNA damage checkpoints coordinate the cellular response to genotoxic stress and arrest the cell cycle in response to DNA damage and replication fork stalling. Homologous recombination is a ubiquitous pathway for the repair of DNA double-stranded breaks and other checkpoint-inducing lesions. Moreover, homologous recombination is involved in postreplicative tolerance of DNA damage and the recovery of DNA replication after replication fork stalling. Here, we show that the phosphorylation on serines 2, 8, and 14 (S2,8,14) of the Rad55 protein is specifically required for survival as well as for normal growth under genome-wide genotoxic stress. Rad55 is a Rad51 paralog in Saccharomyces cerevisiae and functions in the assembly of the Rad51 filament, a central intermediate in recombinational DNA repair. Phosphorylation-defective rad55-S2,8,14A mutants display a very slow traversal of S phase under DNA-damaging conditions, which is likely due to the slower recovery of stalled replication forks or the slower repair of replication-associated DNA damage. These results suggest that Rad55-S2,8,14 phosphorylation activates recombinational repair, allowing for faster recovery after genotoxic stress.


2021 ◽  
Author(s):  
Angela Dello Stritto ◽  
Carmen Maresca ◽  
Carmen D'Angelo ◽  
Eleonora Petti ◽  
Eleonora Vertecchi ◽  
...  

Telomeres are nucleoprotein structures at eukaryotic chromosome termini. Their stability is preserved by a six-protein complex named shelterin. Among these, TRF1 binds telomere duplex and assists DNA replication with mechanisms only partly clarified. Poly (ADP-ribose) polymerase 1 (PARP1) is a chromatin associated enzyme which adds poly (ADP-ribose) polymers (PARs) to acceptor proteins by covalent hetero-modification. Here we found that TRF1 is covalently PARylated by PARP1 during DNA synthesis. PARP1 downregulation perturbs bromodeoxyuridine incorporation at telomeres in S-phase, triggering replication-dependent DNA damage and telomere fragility. PARylated TRF1 recruits WRN and BLM helicases in S-phase in a PARP1-dependent manner, probably through non-covalent PAR binding to solve secondary structures during telomere replication. ALT telomeres are less affected by PARP1 downregulation and are less sensitive to PARP inhibitors. This work unveils an unprecedented role for PARP1 as a "surveillant" of telomere replication, in absence of exogenous DNA insults, which orchestrates protein dynamics at proceeding replication fork.


2008 ◽  
Vol 180 (6) ◽  
pp. 1073-1086 ◽  
Author(s):  
Julie M. Caldwell ◽  
Yinhuai Chen ◽  
Kaila L. Schollaert ◽  
James F. Theis ◽  
George F. Babcock ◽  
...  

The S-phase checkpoint activated at replication forks coordinates DNA replication when forks stall because of DNA damage or low deoxyribonucleotide triphosphate pools. We explore the involvement of replication forks in coordinating the S-phase checkpoint using dun1Δ cells that have a defect in the number of stalled forks formed from early origins and are dependent on the DNA damage Chk1p pathway for survival when replication is stalled. We show that providing additional origins activated in early S phase and establishing a paused fork at a replication fork pause site restores S-phase checkpoint signaling to chk1Δ dun1Δ cells and relieves the reliance on the DNA damage checkpoint pathway. Origin licensing and activation are controlled by the cyclin–Cdk complexes. Thus, oncogene-mediated deregulation of cyclins in the early stages of cancer development could contribute to genomic instability through a deficiency in the forks required to establish the S-phase checkpoint.


2005 ◽  
Vol 168 (7) ◽  
pp. 999-1012 ◽  
Author(s):  
Jeff Bachant ◽  
Shannon R. Jessen ◽  
Sarah E. Kavanaugh ◽  
Candida S. Fielding

The budding yeast S phase checkpoint responds to hydroxyurea-induced nucleotide depletion by preventing replication fork collapse and the segregation of unreplicated chromosomes. Although the block to chromosome segregation has been thought to occur by inhibiting anaphase, we show checkpoint-defective rad53 mutants undergo cycles of spindle extension and collapse after hydroxyurea treatment that are distinct from anaphase cells. Furthermore, chromatid cohesion, whose dissolution triggers anaphase, is dispensable for S phase checkpoint arrest. Kinetochore–spindle attachments are required to prevent spindle extension during replication blocks, and chromosomes with two centromeres or an origin of replication juxtaposed to a centromere rescue the rad53 checkpoint defect. These observations suggest that checkpoint signaling is required to generate an inward force involved in maintaining preanaphase spindle integrity during DNA replication distress. We propose that by promoting replication fork integrity under these conditions Rad53 ensures centromere duplication. Replicating chromosomes can then bi-orient in a cohesin-independent manner to restrain untimely spindle extension.


Sign in / Sign up

Export Citation Format

Share Document