scholarly journals A Motif within SET-Domain Proteins Binds Single-Stranded Nucleic Acids and Transcribed and Supercoiled DNAs and Can Interfere with Assembly of Nucleosomes

2005 ◽  
Vol 25 (5) ◽  
pp. 1891-1899 ◽  
Author(s):  
Wladyslaw A. Krajewski ◽  
Tatsuya Nakamura ◽  
Alexander Mazo ◽  
Eli Canaani

ABSTRACT The evolutionary conserved SET domain is present in many eukaryotic chromatin-associated proteins, including some members of the trithorax (TrxG) group and the polycomb (PcG) group of epigenetic transcriptional regulators and modifiers of position effect variegation. All SET domains examined exhibited histone lysine methyltransferase activity, implicating these proteins in the generation of epigenetic marks. However, the mode of the initial recruitment of SET proteins to target genes and the way that their association with the genes is maintained after replication are not known. We found that SET-containing proteins of the SET1 and SET2 families contain motifs in the pre-SET region or at the pre-SET-SET and SET-post-SET boundaries which very tightly bind single-stranded DNA (ssDNA) and RNA. These motifs also bind stretches of ssDNA generated by superhelical tension or during the in vitro transcription of duplex DNA. Importantly, such binding withstands nucleosome assembly, interfering with the formation of regular nucleosomal arrays. Two representatives of the SUV39 SET family, SU(VAR)3-9 and G9a, did not bind ssDNA. The trx Z11 homeotic point mutation, which is located within TRX SET and disrupts embryonic development, impairs the ssDNA binding capacity of the protein. We suggest that the motifs described here may be directly involved in the biological function(s) of SET-containing proteins. The binding of single-stranded nucleic acids might play a role in the initial recruitment of the proteins to target genes, in the maintenance of their association after DNA replication, or in sustaining DNA stretches in a single-stranded configuration to allow for continuous transcription.

Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 257-275 ◽  
Author(s):  
Sophie Netter ◽  
Marie-Odile Fauvarque ◽  
Ruth Diez del Corral ◽  
Jean-Maurice Dura ◽  
Dario Coen

AbstractWe used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1–3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb -group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc -G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.


1998 ◽  
Vol 111 (17) ◽  
pp. 2615-2623 ◽  
Author(s):  
A. Das ◽  
J.H. Park ◽  
C.B. Hagen ◽  
M. Parsons

Nopp44/46 is a phosphoprotein of the protozoan parasite Trypanosoma brucei that is localized to the nucleolus. Based on the primary sequence, Nopp44/46 appears to be a protein composed of distinct domains. This communication describes the relationship of these domains to the known functional interactions of the molecule and suggests that the amino-terminal region defines a novel homology region that functions in nucleolar targeting. We have previously shown that Nopp44/46 is capable of interacting with nucleic acids and associating with a protein kinase. Using in vitro transcription and translation, we now demonstrate that the nucleic acid binding function maps to the carboxy-terminal domain of the molecule, a region rich in arginine-glycine-glycine motifs. Our experiments reveal that a central region containing a high proportion of acidic residues is required for association with the protein kinase. Analysis of transfectants expressing epitope-tagged Nopp44/46 deletion constructs showed that the amino-terminal 96 amino acids allowed nuclear and nucleolar accumulation of the protein. This region of the molecule shows homology to several recently described nucleolar proteins. Deletion of a 27-amino-acid region within this domain abrogated nucleolar, but not nuclear, localization. These studies show that Nopp44/46 is composed of distinct modules, each of which plays a different role in molecular interactions. We suggest that this protein could facilitate interactions between sets of nucleolar molecules.


Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1207-1216 ◽  
Author(s):  
D.A. Sinclair ◽  
T.A. Milne ◽  
J.W. Hodgson ◽  
J. Shellard ◽  
C.A. Salinas ◽  
...  

The Additional sex combs (Asx) gene of Drosophila is a member of the Polycomb group of genes, which are required for maintenance of stable repression of homeotic and other loci. Asx is unusual among the Polycomb group because: (1) one Asx allele exhibits both anterior and posterior transformations; (2) Asx mutations enhance anterior transformations of trx mutations; (3) Asx mutations exhibit segmentation phenotypes in addition to homeotic phenotypes; (4) Asx is an Enhancer of position-effect variegation and (5) Asx displays tissue-specific derepression of target genes. Asx was cloned by transposon tagging and encodes a protein of 1668 amino acids containing an unusual cysteine cluster at the carboxy terminus. The protein is ubiquitously expressed during development. We show that Asx is required in the central nervous system to regulate Ultrabithorax. ASX binds to multiple sites on polytene chromosomes, 70% of which overlap those of Polycomb, polyhomeotic and Polycomblike, and 30% of which are unique. The differences in target site recognition may account for some of the differences in Asx phenotypes relative to other members of the Polycomb group.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance. Results We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor. Conclusions Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 12
Author(s):  
Chenchen Lu ◽  
Zhiqing Li ◽  
Li Chang ◽  
Zhaoming Dong ◽  
Pengchao Guo ◽  
...  

Polyamidoamine (PAMAM) dendrimers are emerging as intriguing nanovectors for nucleic acid delivery because of their unique well-defined architecture and high binding capacity, which have been broadly applied in DNA- and RNA-based therapeutics. The low-cost and high-efficiency of PAMAM dendrimers relative to traditional liposomal transfection reagents also promote their application in gene function analysis. In this study, we first investigated the potential use of a PAMAM system in the silkworm model insect. We determined the binding property of G5-PAMAM using dsRNA and DNA in vitro, and substantially achieved the delivery of dsRNA and DNA from culture medium to both silkworm BmN and BmE cells, thus leading to efficient knockdown and expression of target genes. Under treatments with different concentrations of G5-PAMAM, we evaluated its cellular cytotoxicity on silkworm cells, and the results show that G5-PAMAM had no obvious toxicity to cells. The presence of serum in the culture medium did not affect the delivery performance of DNA and dsRNA by G5-PAMAM, revealing its convenient use for various purposes. In conclusion, our data demonstrate that the PAMAM system provides a promising strategy for delivering dsRNA and DNA in cultured silkworm cells and promote its further application in individuals.


Development ◽  
1998 ◽  
Vol 125 (1) ◽  
pp. 61-69 ◽  
Author(s):  
K. Svensson ◽  
R. Mattsson ◽  
T.C. James ◽  
P. Wentzel ◽  
M. Pilartz ◽  
...  

Transcriptional silencing can reflect heritable, epigenetic inactivation of genes, either singly or in groups, during the life-time of an organism. This phenomenon is exemplified by parent-of-origin-specific inactivation events (genomic imprinting) for a subset of mammalian autosomal genes, such as H19. Very little is known, however, about the timing and mechanism(s) of silencing of the paternal H19 allele during mouse development. Using a novel in situ approach, we present evidence that the silencing of the paternal H19 allele is progressive in the trophectodermal lineage during early mouse development and generates variegated expression patterns. The silencing process apparently involves recruitment of histone deacetylases since the mosaic paternal-specific H19 expression reappears in trichostatin A-treated mouse conceptuses, undergoing in vitro organogenesis. Moreover, the paternal H19 alleles of PatDup.d7 placentas, in which a region encompassing the H19 locus of chromosome 7 is bipaternally derived, partially escape the silencing process and are expressed in a variegated manner. We suggest that allele-specific silencing of H19 share some common features with chromatin-mediated silencing in position-effect variegation.


2002 ◽  
Vol 22 (22) ◽  
pp. 7812-7819 ◽  
Author(s):  
Annika E. Wallberg ◽  
Kia Pedersen ◽  
Urban Lendahl ◽  
Robert G. Roeder

ABSTRACT Ligand activation of Notch receptors leads to release of the intracellular receptor domain (Notch IC), which translocates to the nucleus and interacts with the DNA-binding protein RBP-Jκ to control expression of specific target genes. A number of proteins have been shown to interact with Notch ICs and to modulate target gene activation, but the precise function of and interplay between these factors is not known. This report investigates the Notch IC-interacting proteins, p300, PCAF, and Mastermind-like 1 (MAML1), in an in vitro transcription system with purified factors and naked DNA or chromatin templates. MAML1, RBP-Jκ, and Notch IC are all required for optimal transcription from DNA, whereas transcription from chromatin requires, in addition, p300, which interacts with MAML1. The transcriptional activity of p300 requires acetyl coenzyme A, indicating that it functions as a histone acetyltransferase when mediating Notch IC function. PCAF is unable to promote transcription on its own but enhances Notch IC-mediated transcription from chromatin in conjunction with p300. These data define a critical role for p300 in the potentiation of Notch IC function by MAML1 and PCAF, provide the first evidence for cooperativity between PCAF and p300 in Notch IC function, and also indicate direct effects of RBP-Jκ, Notch IC, and MAML1 on the general transcription machinery.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1539-1549 ◽  
Author(s):  
Antoine Boivin ◽  
Jean-Maurice Dura

Abstract Gene silencing by heterochromatin is a well-known phenomenon that, in Drosophila, is called position effect variegation (PEV). The long-held hypothesis that this gene silencing is associated with an altered chromatin structure received direct support only recently. Another gene-silencing phenomenon in Drosophila, although similar in its phenotype of variegation, has been shown to be associated with euchromatic sequences and is dependent on developmental regulators of the Polycomb group (Pc-G) of gene products. One model proposes that the Pc-G products may cause a local heterochromatinization that maintains a repressed state of transcription of their target genes. Here, we test these models by measuring the accessibility of white or miniwhite sequences, in different contexts, to the Escherichia coli dam DNA methyltransferase in vivo. We present evidence that PEV and Pc-G-mediated repression mechanisms, although based on different protein factors, may indeed involve similar higher-order chromatin structure.


2020 ◽  
Author(s):  
Sigrid Hoyer-Fender

Abstract Background: The Drosophila melanogaster mutant white-mottled is a well-established model for position-effect variegation (PEV). Transposition of the euchromatic white gene into the vicinity of the pericentric heterochromatin caused variegated expression of white due to heterochromatin spreading. The establishment of the euchromatin-heterochromatin boundary and spreading of silencing is regulated by mutually exclusive histone modifications, i.e. the methylations of histone H3 at lysine 9 and lysine 4. Demethylation of H3K4, catalysed by lysine-specific demethylase LSD1, is required for subsequent methylation of H3K9 to establish heterochromatin. LSD1 is therefore essential for heterochromatin formation and spreading. We asked whether drug-mediated inhibition of LSD affects the expression of white and if this induced change can be transmitted to those generations that have never been exposed to the triggering signal, i.e. transgenerational epigenetic inheritance.Results: We used the lysine-specific demethylase 1 (LSD1)-inhibitor Tranylcypromine to investigate its effect on eye colour expression in consecutive generations by feeding the parental and F1 generations of the Drosophila melanogaster mutant white-mottled. Quantitative Western blotting revealed that Tranylcypromine inhibits H3K4-demethylation both in vitro in S2 cells as well as in embryos when used as feeding additive. Eye colour expression in male flies was determined by optical measurement of pigment extracts and qRT-PCR of white gene expression. Flies raised in the presence of Tranylcypromine and its solvent DMSO showed increased eye pigment expression. Beyond that, eye pigment expression was also affected in consecutive generations including F3, which is the first generation without contact with the inhibitor.Conclusions: Our results show that feeding of Tranylcypromine and DMSO caused desilencing of white in treated flies of generation F1. Consecutive generations, raised on standard food without further supplements, are also affected by the drug-induced alteration of histone modifications. Although eye pigment expression eventually returned to the basal state, the observed long-lasting effect points to a memory capacity of previous epigenomes. Furthermore, our results indicate that food compounds potentially affect chromatin modification and hence gene expression and that the alteration is putatively inherited not only parentally but transgenerationally.


Sign in / Sign up

Export Citation Format

Share Document