scholarly journals Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae.

1984 ◽  
Vol 4 (10) ◽  
pp. 1985-1998 ◽  
Author(s):  
R R Yocum ◽  
S Hanley ◽  
R West ◽  
M Ptashne

We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.

1984 ◽  
Vol 4 (10) ◽  
pp. 1985-1998
Author(s):  
R R Yocum ◽  
S Hanley ◽  
R West ◽  
M Ptashne

We present the DNA sequence of a 914-base pair fragment from Saccharomyces cerevisiae that contains the GAL1-GAL10 divergent promoter, 140 base pairs of GAL10 coding sequence, and 87 base pairs of GAL1 coding sequence. From this fragment, we constructed four pairs of GAL1-lacZ and GAL10-lacZ fusions on various types of yeast plasmid vectors. On each type of vector, the fused genes were induced by galactose and repressed by glucose. The response of a GAL1-lacZ fusion to gal4 and gal80 regulatory mutations was similar to the response of intact chromosomal GAL1 and GAL10 genes. A set of deletions that removed various portions of the GAL10 regulatory sequences from a GAL10-CYC1-lacZ fusion was constructed in vitro. These deletions defined a relatively guanine-cytosine-rich region of 45 base pairs that contained sequences necessary for full-strength galactose induction and an adjacent guanine-cytosine rich 55 base pairs that contained sequences sufficient for weak induction.


1994 ◽  
Vol 14 (1) ◽  
pp. 214-225
Author(s):  
D A Sinclair ◽  
G D Kornfeld ◽  
I W Dawes

Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.


1986 ◽  
Vol 6 (7) ◽  
pp. 2443-2451 ◽  
Author(s):  
A Percival-Smith ◽  
J Segall

A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.


1994 ◽  
Vol 14 (1) ◽  
pp. 214-225 ◽  
Author(s):  
D A Sinclair ◽  
G D Kornfeld ◽  
I W Dawes

Though widely recognized in higher eukaryotes, the regulation of Saccharomyces cerevisiae genes transcribed by RNA polymerase II by proteins that bind within the coding sequence remains largely speculative. We have shown for the LPD1 gene, encoding lipoamide dehydrogenase, that the coding sequence between +13 and +469 activated gene expression of an LPD1::lacZ fusion by up to sixfold in the presence of the upstream promoter. This downstream region, inserted upstream of a promoterless CYC1::lacZ fusion, activated gene expression in a carbon source-dependent manner by a factor of 15 to 111, independent of orientation. Deletion and mutational analysis identified two downstream activation sites (DAS1 and DAS2) and two downstream repressor sites (DRS1 and DRS2) that influence the rate of LPD1 transcription rather than mRNA degradation or translation. Activation from the DAS1 region (positions +137 to +191), encompassing a CDEI-like element, is twofold under derepressive conditions. Activation from DAS2 (+291 to +296), a CRE-like motif, is 12-fold for both repressed and derepressed states. DRS1, a pair of adjacent and opposing ABF1 sites (+288 to +313), is responsible for a 1.3- to 2-fold repression of transcription, depending on the carbon source. DRS1 requires the concerted action of DRS2 (a RAP1 motif at position +406) for repression of transcription only when the gene is induced. Gel mobility shift analysis and in vitro footprinting have shown that proteins bind in vitro to these downstream elements.


1986 ◽  
Vol 6 (7) ◽  
pp. 2443-2451
Author(s):  
A Percival-Smith ◽  
J Segall

A differential hybridization screen of a genomic yeast DNA library previously identified 14 genes of Saccharomyces cerevisiae that are expressed preferentially during sporulation. Three of these sporulation-specific genes, SPS1, SPS2, and SPS3, have been shown to be closely linked. A mutational analysis has demonstrated that expression of the SPS1 gene, but not the SPS2 gene, is essential for the completion of sporulation. A diploid MATa/MAT alpha strain homozygous for a disruption of the SPS1 gene failed to form asci when subjected to sporulation conditions. The 3' end of the transcript encoded by the SPS1 gene was found to map only 185 base pairs from the 5' end of the SPS2 gene. The SPS1-SPS2 intergenic region was shown to contain all of the regulatory sequences necessary for the sporulation-specific activation of the SPS2 gene as assessed by expression of a translational SPS2-lacZ fusion gene present on a replicating, centromere-containing plasmid. The fusion gene was found to be expressed at the same time during sporulation as the chromosomal wild-type SPS2 gene.


1986 ◽  
Vol 6 (12) ◽  
pp. 4548-4557
Author(s):  
J Hirsh ◽  
B A Morgan ◽  
S B Scholnick

We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity.


2021 ◽  
Author(s):  
Giuliano Crispatzu ◽  
Rizwan Rehimi ◽  
Tomas Pachano ◽  
Tore Bleckwehl ◽  
Sara de la Cruz Molina ◽  
...  

AbstractPoised enhancers (PEs) represent a limited and genetically distinct set of distal regulatory elements that control the induction of developmental genes in a hierarchical and non-redundant manner. Before becoming activated in differentiating cells, PEs are already bookmarked in pluripotent cells with unique chromatin and topological features that could contribute to their privileged regulatory properties. However, since PEs were originally identified and subsequently characterized using embryonic stem cells (ESC) as an in vitro differentiation system, it is currently unknown whether PEs are functionally conserved in vivo. Here, we generate and mine various types of genomic data to show that the chromatin and 3D structural features of PEs are conserved among mouse pluripotent cells both in vitro and in vivo. We also uncovered that, in mouse pluripotent cells, the interactions between PEs and their bivalent target genes are globally controlled by the combined action of Polycomb, Trithorax and architectural proteins. Moreover, distal regulatory sequences located close to developmental genes and displaying the typical genetic (i.e. proximity to CpG islands) and chromatin (i.e. high accessibility and H3K27me3 levels) features of PEs are commonly found across vertebrates. These putative PEs show high sequence conservation, preferentially within specific vertebrate clades, with only a small subset being evolutionary conserved across all vertebrates. Lastly, by genetically disrupting evolutionary conserved PEs in mouse and chicken embryos, we demonstrate that these regulatory elements play essential and non-redundant roles during the induction of major developmental genes in vivo.


1986 ◽  
Vol 6 (11) ◽  
pp. 3847-3853
Author(s):  
K Struhl

his3 and pet56 are adjacent Saccharomyces cerevisiae genes that are transcribed in opposite directions from initiation sites that are separated by 200 base pairs. Under normal growth conditions, in which his3 and pet56 are transcribed at similar basal levels, a poly(dA-dT) sequence located between the genes serves as the upstream promoter element for both. In contrast, his3 but not pet56 transcription is induced during conditions of amino acid starvation, even though the critical regulatory site is located upstream of both respective TATA regions. Moreover, only one of the two normal his3 initiation sites is subject to induction. From genetic and biochemical evidence, I suggest that the his3-pet56 intergenic region contains constitutive and inducible promoters with different properties. In particular, two classes of TATA elements, constitutive (Tc) and regulatory (Tr), can be distinguished by their ability to respond to upstream regulatory elements, by their effects on the selection of initiation sites, and by their physical structure in nuclear chromatin. Constitutive and inducible his3 transcription is mediated by distinct promoters representing each class, whereas pet56 transcription is mediated by a constitutive promoter. Molecular mechanisms for these different kinds of S. cerevisiae promoters are proposed.


1984 ◽  
Vol 4 (8) ◽  
pp. 1440-1448 ◽  
Author(s):  
M Johnston ◽  
R W Davis

The GAL1 and GAL10 genes of Saccharomyces cerevisiae are divergently transcribed, with 606 base pairs of DNA separating their transcription initiation sites. These two genes are stringently coregulated: their expression is induced ca. 1,000-fold in cells growing on galactose and is repressed by growth on glucose. The nucleotide sequence of the region of DNA between these genes and the precise sites of transcription initiation are presented here. The most notable feature of the nucleotide sequence of this region is a 108-base-pair guanine-plus-cytosine-rich stretch of DNA located approximately in the middle of the region between GAL1 and GAL10. Analysis of the effects of mutations that alter the region between these two genes, constructed in vitro or selected in vivo, suggest that these guanine-plus-cytosine-rich sequences are required for the expression of both genes. The region of DNA between GAL1 and GAL10 is sufficient for regulation of expression of these genes: fusion of the region to the yeast HIS3 gene places HIS3 under GAL control.


1985 ◽  
Vol 5 (12) ◽  
pp. 3545-3551 ◽  
Author(s):  
J B McNeil ◽  
M Smith

Expression of the Saccharomyces cerevisiae CYC1 gene produces mRNA with more than 20 different 5' ends. A derivative of the CYC1 gene (CYC1-157) was constructed with a deletion of a portion of the CYC1 5'-noncoding region, which includes the sites at which many of the CYC1 mRNAs 5' ends map. A 54-mer double-stranded oligonucleotide homologous with the deleted sequence of CYC1-157 and which included a low level of random base pair mismatches (an average of two mismatches per duplex) was used to construct mutants of the CYC1 gene and examine the role of the DNA sequence at and immediately adjacent to the mRNA 5' ends in specifying their locations. The effect of these mutations on the site selection of mRNA 5' ends was examined by primer extension. Results indicate that there is a strong preference for 5' ends which align with an A residue (T in the template DNA strand) preceded by a short tract of pyrimidine residues.


Sign in / Sign up

Export Citation Format

Share Document