scholarly journals La antigen recognizes and binds to the 3'-oligouridylate tail of a small RNA.

1984 ◽  
Vol 4 (6) ◽  
pp. 1134-1140 ◽  
Author(s):  
M B Mathews ◽  
A M Francoeur

The La antigen is a cellular protein which interacts with many RNA species that are products of RNA polymerase III, including the adenovirus virus-associated (VA) RNAs. We demonstrate that the efficiency of antigen binding in vitro is determined by the number of U residues at the RNA 3' terminus. Forms of VA RNAI with more than two terminal U residues are fully bound, forms with two U residues are partially bound, and forms with fewer than two U residues are not bound at all. The antigen can be covalently linked to VA RNA by UV irradiation, and the site of cross-linking is shown to contain the 3' terminus of the RNA. We conclude that the antigen recognizes the U-rich 3' tail of VA RNA, and presumably that of other polymerase III products, and that it binds at or close to this site.

1984 ◽  
Vol 4 (6) ◽  
pp. 1134-1140
Author(s):  
M B Mathews ◽  
A M Francoeur

The La antigen is a cellular protein which interacts with many RNA species that are products of RNA polymerase III, including the adenovirus virus-associated (VA) RNAs. We demonstrate that the efficiency of antigen binding in vitro is determined by the number of U residues at the RNA 3' terminus. Forms of VA RNAI with more than two terminal U residues are fully bound, forms with two U residues are partially bound, and forms with fewer than two U residues are not bound at all. The antigen can be covalently linked to VA RNA by UV irradiation, and the site of cross-linking is shown to contain the 3' terminus of the RNA. We conclude that the antigen recognizes the U-rich 3' tail of VA RNA, and presumably that of other polymerase III products, and that it binds at or close to this site.


1993 ◽  
Vol 13 (5) ◽  
pp. 2655-2665 ◽  
Author(s):  
J G Howe ◽  
M D Shu

The Epstein-Barr virus-encoded small RNA (EBER) genes are transcribed by RNA polymerase III, but their transcription unit appears to contain both class II and class III promoter elements. One of these promoter element, a TATA-like box which we call the EBER TATA box, or ETAB, is located in a position typical for a class II TATA box but contains G/C residues in the normal T/A motif and a conserved thymidine doublet. Experiments using chloramphenicol acetyltransferase constructs and mutations in the TATA box of the adenovirus major late promoter showed that the ETAB promoter element does not substitute for a class II TATA box. However, when the ETAB promoter element sequence was changed to a class II TATA box consensus sequence, the EBER 2 gene was transcribed in vitro by both RNA polymerases II and III. From these results, we conclude that the ETAB promoter element is important for the exclusive transcription of the EBER 2 gene by RNA polymerase III.


1994 ◽  
Vol 14 (9) ◽  
pp. 6164-6170
Author(s):  
P P Sadhale ◽  
N A Woychik

We identified a partially sequenced Saccharomyces cerevisiae gene which encodes a protein related to the S. cerevisiae RNA polymerase II subunit, RPB7. Several lines of evidence suggest that this related gene, YKL1, encodes the RNA polymerase III subunit C25. C25, like RPB7, is present in submolar ratios, easily dissociates from the enzyme, is essential for cell growth and viability, but is not required in certain transcription assays in vitro. YKL1 has ABF-1 and PAC upstream sequences often present in RNA polymerase subunit genes. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobility of the YKL1 gene product is equivalent to that of the RNA polymerase III subunit C25. Finally, a C25 conditional mutant grown at the nonpermissive temperature synthesizes tRNA at reduced rates relative to 5.8S rRNA, a hallmark of all characterized RNA polymerase III mutants.


1993 ◽  
Vol 120 (3) ◽  
pp. 613-624 ◽  
Author(s):  
P Hartl ◽  
J Gottesfeld ◽  
D J Forbes

A normal consequence of mitosis in eukaryotes is the repression of transcription. Using Xenopus egg extracts shifted to a mitotic state by the addition of purified cyclin, we have for the first time been able to reproduce a mitotic repression of transcription in vitro. Active RNA polymerase III transcription is observed in interphase extracts, but strongly repressed in extracts converted to mitosis. With the topoisomerase II inhibitor VM-26, we demonstrate that this mitotic repression of RNA polymerase III transcription does not require normal chromatin condensation. Similarly; in vitro mitotic repression of transcription does not require the presence of nucleosome structure or involve a general repressive chromatin-binding protein, as inhibition of chromatin formation with saturating amounts of non-specific DNA has no effect on repression. Instead, the mitotic repression of transcription appears to be due to phosphorylation of a component of the transcription machinery by a mitotic protein kinase, either cdc2 kinase and/or a kinase activated by it. Mitotic repression of RNA polymerase III transcription is observed both in complete mitotic cytosol and when a kinase-enriched mitotic fraction is added to a highly simplified 5S RNA transcription reaction. We present evidence that, upon depletion of cdc2 kinase, a secondary protein kinase activity remains and can mediate this in vitro mitotic repression of transcription.


Transcription ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. e27526 ◽  
Author(s):  
Hélène Dumay-Odelot ◽  
Stéphanie Durrieu-Gaillard ◽  
Leyla El Ayoubi ◽  
Camila Parrot ◽  
Martin Teichmann

Sign in / Sign up

Export Citation Format

Share Document