scholarly journals Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe.

1987 ◽  
Vol 7 (12) ◽  
pp. 4424-4430 ◽  
Author(s):  
T Matsumoto ◽  
K Fukui ◽  
O Niwa ◽  
N Sugawara ◽  
J W Szostak ◽  
...  

The minichromosome Ch16 of the fission yeast Schizosaccharomyces pombe is derived from the centromeric region of chromosome III. We show that Ch16 and a shorter derivative, Ch12, made by gamma-ray cleavage, are linear molecules of 530 and 280 kilobases, respectively. Each minichromosome has two novel telomeres, as shown by genomic Southern hybridization with an S. pombe telomere probe. Comparison by hybridization of the minichromosomes and their chromosomal counterparts showed no signs of gross rearrangement. Cosmid clones covering the ends of the long arms of Ch16 and Ch12 were isolated, and subcloned fragments that contained the breakage sites were identified. They are apparently unique in the genome. By hybridization and Bal 31 digestion, the ends appear to consist of the broken-end sequences directly associated with short stretches (about 300 base pairs) of new DNA that hybridizes to a cloned S. pombe telomere. They do not contain the telomere-adjacent repeated sequences that are present in the normal chromosomes. The sizes of the short telomeric stretches are roughly the same as those of the normal chromosomes. Our results show that broken chromosomal ends in S. pombe can be healed by the de novo addition of the short telomeric repeats. The formation of Ch16 must have required two breakage-healing events, whereas a single cleavage-healing event in the long arm of Ch16 yielded Ch12.

1987 ◽  
Vol 7 (12) ◽  
pp. 4424-4430
Author(s):  
T Matsumoto ◽  
K Fukui ◽  
O Niwa ◽  
N Sugawara ◽  
J W Szostak ◽  
...  

The minichromosome Ch16 of the fission yeast Schizosaccharomyces pombe is derived from the centromeric region of chromosome III. We show that Ch16 and a shorter derivative, Ch12, made by gamma-ray cleavage, are linear molecules of 530 and 280 kilobases, respectively. Each minichromosome has two novel telomeres, as shown by genomic Southern hybridization with an S. pombe telomere probe. Comparison by hybridization of the minichromosomes and their chromosomal counterparts showed no signs of gross rearrangement. Cosmid clones covering the ends of the long arms of Ch16 and Ch12 were isolated, and subcloned fragments that contained the breakage sites were identified. They are apparently unique in the genome. By hybridization and Bal 31 digestion, the ends appear to consist of the broken-end sequences directly associated with short stretches (about 300 base pairs) of new DNA that hybridizes to a cloned S. pombe telomere. They do not contain the telomere-adjacent repeated sequences that are present in the normal chromosomes. The sizes of the short telomeric stretches are roughly the same as those of the normal chromosomes. Our results show that broken chromosomal ends in S. pombe can be healed by the de novo addition of the short telomeric repeats. The formation of Ch16 must have required two breakage-healing events, whereas a single cleavage-healing event in the long arm of Ch16 yielded Ch12.


2003 ◽  
Vol 23 (23) ◽  
pp. 8820-8828 ◽  
Author(s):  
Jia-Lin Ma ◽  
Eun Mi Kim ◽  
James E. Haber ◽  
Sang Eun Lee

ABSTRACT End joining of double-strand breaks (DSBs) requires Ku proteins and frequently involves base pairing between complementary terminal sequences. To define the role of terminal base pairing in end joining, two oppositely oriented HO endonuclease cleavage sites separated by 2.0 kb were integrated into yeast chromosome III, where constitutive expression of HO endonuclease creates two simultaneous DSBs with no complementary end sequence. Lack of complementary sequence in their 3′ single-strand overhangs facilitates efficient repair events distinctly different from when the 3′ ends have a 4-bp sequence base paired in various ways to create 2- to 3-bp insertions. Repair of noncomplementary ends results in a set of nonrandom deletions of up to 302 bp, annealed by imperfect microhomology of about 8 to 10 bp at the junctions. This microhomology-mediated end joining (MMEJ) is Ku independent, but strongly dependent on Mre11, Rad50, and Rad1 proteins and partially dependent on Dnl4 protein. The MMEJ also occurs when Rad52 is absent, but the extent of deletions becomes more limited. The increased gamma ray sensitivity of rad1Δ rad52Δ yku70Δ strains compared to rad52Δ yku70Δ strains suggests that MMEJ also contributes to the repair of DSBs induced by ionizing radiation.


1986 ◽  
Vol 6 (4) ◽  
pp. 1352-1356
Author(s):  
L L Button ◽  
C R Astell

A yeast Saccharomyces cerevisiae telomeric region was isolated by chromosome walking from HML alpha, the most distal known gene on the chromosome III left (IIIL) end. The terminal heterodisperse 3.3-kilobase (kb) SalI fragment on chromosome IIIL, 8.6 kb distal to HML alpha, was cloned in a circular vector to generate a telomeric probe. Southern hybridization and DNA sequencing analyses indicated that 0.6 kb (+/- 200 base pairs) of 5'-C1-3A-3' simple tandem repeat sequence, adjacent to a 1.2-kb type X ARS region, constitutes the telomere on the chromosome IIIL end, and no type Y' ARS region homologies exist between HML alpha and the IIIL terminus.


1986 ◽  
Vol 6 (4) ◽  
pp. 1352-1356 ◽  
Author(s):  
L L Button ◽  
C R Astell

A yeast Saccharomyces cerevisiae telomeric region was isolated by chromosome walking from HML alpha, the most distal known gene on the chromosome III left (IIIL) end. The terminal heterodisperse 3.3-kilobase (kb) SalI fragment on chromosome IIIL, 8.6 kb distal to HML alpha, was cloned in a circular vector to generate a telomeric probe. Southern hybridization and DNA sequencing analyses indicated that 0.6 kb (+/- 200 base pairs) of 5'-C1-3A-3' simple tandem repeat sequence, adjacent to a 1.2-kb type X ARS region, constitutes the telomere on the chromosome IIIL end, and no type Y' ARS region homologies exist between HML alpha and the IIIL terminus.


2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


1988 ◽  
Vol 8 (2) ◽  
pp. 595-604
Author(s):  
L S Symington ◽  
T D Petes

To examine the relationship between genetic and physical chromosome maps, we constructed a diploid strain of the yeast Saccharomyces cerevisiae heterozygous for 12 restriction site mutations within a 23-kilobase (5-centimorgan) interval of chromosome III. Crossovers were not uniformly distributed along the chromosome, one interval containing significantly more and one interval significantly fewer crossovers than expected. One-third of these crossovers occurred within 6 kilobases of the centromere. Approximately half of the exchanges were associated with gene conversion events. The minimum length of gene conversion tracts varied from 4 base pairs to more than 12 kilobases, and these tracts were nonuniformly distributed along the chromosome. We conclude that the chromosomal sequence or structure has a dramatic effect on meiotic recombination.


1987 ◽  
Vol 7 (1) ◽  
pp. 504-511 ◽  
Author(s):  
J Hindley ◽  
G Phear ◽  
M Stein ◽  
D Beach

Sucl+ was originally identified as a DNA sequence that, at high copy number, rescued Schizosaccharomyces pombe strains carrying certain temperature-sensitive alleles of the cdc2 cell cycle control gene. We determined the nucleotide sequence of a 1,083-base-pair Sucl+ DNA fragment and S1 mapped its 866-nucleotide RNA transcript. The protein-coding sequence of the gene is interrupted by two intervening sequences of 115 and 51 base pairs. The predicted translational product of the gene is a protein of 13 kilodaltons. A chromosomal gene disruption of Sucl+ was constructed in a diploid S. pombe strain. Germinating spores carrying a null allele of the gene were capable of very limited cell division, following which many cells became highly elongated. The Sucl+ gene was also strongly overexpressed under the control of a heterologous S. pombe promoter. Overexpression of Sucl+ is not lethal but causes a division delay such that cells are approximately twice the normal length at division. These data suggest that Sucl+ encodes a protein which plays a direct role in the cell division cycle of S. pombe.


2019 ◽  
Vol 7 (2) ◽  
pp. 391-402 ◽  
Author(s):  
Yaoxi He ◽  
Haiyi Lou ◽  
Chaoying Cui ◽  
Lian Deng ◽  
Yang Gao ◽  
...  

Abstract Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.


DNA Research ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 341-352
Author(s):  
Michal Růžička ◽  
Přemysl Souček ◽  
Petr Kulhánek ◽  
Lenka Radová ◽  
Lenka Fajkusová ◽  
...  

Abstract Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


Science ◽  
2019 ◽  
Vol 363 (6425) ◽  
pp. eaau1043 ◽  
Author(s):  
Bjarni V. Halldorsson ◽  
Gunnar Palsson ◽  
Olafur A. Stefansson ◽  
Hakon Jonsson ◽  
Marteinn T. Hardarson ◽  
...  

Genetic diversity arises from recombination and de novo mutation (DNM). Using a combination of microarray genotype and whole-genome sequence data on parent-child pairs, we identified 4,531,535 crossover recombinations and 200,435 DNMs. The resulting genetic map has a resolution of 682 base pairs. Crossovers exhibit a mutagenic effect, with overrepresentation of DNMs within 1 kilobase of crossovers in males and females. In females, a higher mutation rate is observed up to 40 kilobases from crossovers, particularly for complex crossovers, which increase with maternal age. We identified 35 loci associated with the recombination rate or the location of crossovers, demonstrating extensive genetic control of meiotic recombination, and our results highlight genes linked to the formation of the synaptonemal complex as determinants of crossovers.


Sign in / Sign up

Export Citation Format

Share Document