DNA-binding factors of B lymphoid cells are susceptible to limited proteolytic cleavage during nuclear extract preparation

1988 ◽  
Vol 8 (4) ◽  
pp. 1812-1815
Author(s):  
E L Mather

DNA-binding proteins that interact with the 3' end of the mouse mu immunoglobulin heavy chain gene were identified by the electrophoretic mobility shift assay. Complexes of distinctly different mobilities were formed by extracts prepared from B lymphoid lines representing different stages of maturation. The apparent stage-specific differences are shown to be due to proteolytic events that occurred during extract preparation.

1988 ◽  
Vol 8 (4) ◽  
pp. 1812-1815 ◽  
Author(s):  
E L Mather

DNA-binding proteins that interact with the 3' end of the mouse mu immunoglobulin heavy chain gene were identified by the electrophoretic mobility shift assay. Complexes of distinctly different mobilities were formed by extracts prepared from B lymphoid lines representing different stages of maturation. The apparent stage-specific differences are shown to be due to proteolytic events that occurred during extract preparation.


1993 ◽  
Vol 13 (7) ◽  
pp. 3999-4010 ◽  
Author(s):  
M Merika ◽  
S H Orkin

GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.


1995 ◽  
Vol 42 (2) ◽  
pp. 171-176
Author(s):  
R Rzepecki ◽  
E Markiewicz ◽  
J Szopa

The nuclear matrices from White bush (Cucurbita pepo var. patisonina) cell nuclei have been isolated using three methods: I, standard procedure involving extraction of cell nuclei with 2 M NaCl and 1% Triton X-100; II, the same with pre-treatment of cell nuclei with 0.5 mM CuSO4 (stabilisation step); and III, method with extraction by lithium diiodosalicylate (LIS), and compared the polypeptide pattern. The isolated matrices specifically bind SAR DNA derived from human beta-interferon gene in the exogenous SAR binding assay and in the gel mobility shift assay. Using IgG against the 32 kDa endonuclease we have found in the DNA-protein blot assay that this protein is one of the proteins binding SAR DNA. We have identified three proteins with molecular mass of 65 kDa, 60 kDa and 32 kDa which are responsible for SAR DNA binding in the gel mobility shift assay experiments.


2003 ◽  
pp. 95-106 ◽  
Author(s):  
Suzanne M. Cutts ◽  
Andrew Masta ◽  
Con Panousis ◽  
Peter G. Parsons ◽  
Richard A. Sturm ◽  
...  

1993 ◽  
Vol 13 (11) ◽  
pp. 6690-6701
Author(s):  
H Koizumi ◽  
M F Horta ◽  
B S Youn ◽  
K C Fu ◽  
B S Kwon ◽  
...  

The gene encoding the cytolytic protein perforin is selectively expressed by activated killer lymphocytes. To understand the mechanisms underlying the cell-type-specific expression of this gene, we have characterized the regulatory functions and the DNA-protein interactions of the 5'-flanking region of the mouse perforin gene (Pfp). A region extending from residues +62 through -141, which possesses the essential promoter activity, and regions further upstream, which are able to either enhance or suppress gene expression, were identified. The region between residues -411 and -566 was chosen for further characterization, since it contains an enhancer-like activity. We have identified a 32-mer sequence (residues -491 to -522) which appeared to be capable of enhancing gene expression in a killer cell-specific manner. Within this segment, a 9-mer motif (5'-ACAGGAAGT-3', residues -505 to -497; designated NF-P motif), which is highly homologous to the Ets proto-oncoprotein-binding site, was found to interact with two proteins, NF-P1 and NF-P2. NF-P2 appears to be induced by reagents known to up-regulate the perforin message level and is present exclusively in killer cells. Electrophoretic mobility shift assay and UV cross-linking experiments revealed that NF-P1 and NF-P2 may possess common DNA-binding subunits. However, the larger native molecular mass of NF-P1 suggests that NF-P1 contains an additional non-DNA-binding subunit(s). In view of the homology between the NF-P motif and other Ets proto-oncoprotein-binding sites, it is postulated that NF-P1 and NF-P2 belong to the Ets protein family. Results obtained from the binding competition assay, nevertheless, suggest that NF-P1 and NF-P2 are related to but distinct from Ets proteins, e.g., Ets-1, Ets-2, and NF-AT/Elf-1, known to be expressed in T cells.


Parasitology ◽  
2001 ◽  
Vol 123 (3) ◽  
pp. 301-308 ◽  
Author(s):  
C. H. MAK ◽  
R. C. KO

A novel DNA-binding peptide ofMr∼30 kDa was documented for the first time in the excretory–secretory (E–S) products of the infective-stage larvae ofTrichinella pseudospiralis.Larvae recovered from muscles of infected mice were maintained for 48 h in DMEM medium. E–S products of worms extracted from the medium were analysed for DNA-binding activity by the electrophoretic mobility shift assay (EMSA). Multiple DNA-protein complexes were detected. A comparison of theMrof proteins in the complexes indicated that they could bind to the target DNA as a dimer, tetramer or multiples of tetramers. Site selection and competition analysis showed that the binding has a low specificity. A (G/C-rich)-gap-(G/T-rich)-DNA sequence pattern was extracted from a pool of degenerate PCR fragments binding to the E–S products. Results of immunoprecipitation and electrophoretic mobility supershift assay confirmed the authenticity of the DNA-binding protein as an E–S product.


Sign in / Sign up

Export Citation Format

Share Document