scholarly journals The common src homology region 2 domain of cytoplasmic signaling proteins is a positive effector of v-fps tyrosine kinase function.

1989 ◽  
Vol 9 (10) ◽  
pp. 4131-4140 ◽  
Author(s):  
C A Koch ◽  
M Moran ◽  
I Sadowski ◽  
T Pawson

A conserved noncatalytic domain SH2 (for src homology region 2) is located immediately N terminal to the kinase domains of all cytoplasmic protein-tyrosine kinases. We found that the wild-type v-fps SH2 domain stimulated the enzymatic activity of the adjacent kinase domain 10-fold and functioned as a powerful positive effector of catalytic and transforming activities within the v-fps oncoprotein (P130gag-fps). Partial proteolysis of P130gag-fps and supporting genetic data indicated that the v-fps SH2 domain exerts its effect on catalytic activity through an intramolecular interaction with the kinase domain. Amino acid alterations in the SH2 domain that impaired kinase function interfered with association of the SH2 domain with the kinase domain. Deletion of a conserved octapeptide motif converted the v-fps SH2 domain from an activator to an inhibitor of tyrosine kinase activity. This latent inhibitory activity of v-fps SH2 has functional implications for phospholipase C-gamma and p21ras GTPase-activating protein, both of which have two distinct SH2 domains suggestive of complex regulation. In addition to regulating the specific activity of the kinase domain, the SH2 domain of P130gag-fps was also found to be required for the tyrosine phosphorylation of specific cellular proteins, notably polypeptides of 124 and 62 kilodaltons. The SH2 domain therefore appears to play a dual role in regulation of kinase activity and recognition of cellular substrates.

1989 ◽  
Vol 9 (10) ◽  
pp. 4131-4140
Author(s):  
C A Koch ◽  
M Moran ◽  
I Sadowski ◽  
T Pawson

A conserved noncatalytic domain SH2 (for src homology region 2) is located immediately N terminal to the kinase domains of all cytoplasmic protein-tyrosine kinases. We found that the wild-type v-fps SH2 domain stimulated the enzymatic activity of the adjacent kinase domain 10-fold and functioned as a powerful positive effector of catalytic and transforming activities within the v-fps oncoprotein (P130gag-fps). Partial proteolysis of P130gag-fps and supporting genetic data indicated that the v-fps SH2 domain exerts its effect on catalytic activity through an intramolecular interaction with the kinase domain. Amino acid alterations in the SH2 domain that impaired kinase function interfered with association of the SH2 domain with the kinase domain. Deletion of a conserved octapeptide motif converted the v-fps SH2 domain from an activator to an inhibitor of tyrosine kinase activity. This latent inhibitory activity of v-fps SH2 has functional implications for phospholipase C-gamma and p21ras GTPase-activating protein, both of which have two distinct SH2 domains suggestive of complex regulation. In addition to regulating the specific activity of the kinase domain, the SH2 domain of P130gag-fps was also found to be required for the tyrosine phosphorylation of specific cellular proteins, notably polypeptides of 124 and 62 kilodaltons. The SH2 domain therefore appears to play a dual role in regulation of kinase activity and recognition of cellular substrates.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2209-2209
Author(s):  
Oliver D. Hantschel ◽  
Allan Joaquim Lamontanara ◽  
Sandrine Georgeon ◽  
Giancarlo Tria ◽  
Dmitri Svergun

Abstract Chronic myelogenous leukemia (CML) is caused by BCR-ABL1, which is a constitutively active form of the Abelson tyrosine kinase (ABL1). While treatment with the tyrosine kinase inhibitors imatinib, nilotinib, dasatinib, bosutinib or ponatinib that target the ATP binding pocket of BCR-ABL1 leads to durable cytogenetic and molecular remissions in the majority CML patients, primary and secondary drug resistance remains a clinical problem. Targeting additional sites in the BCR-ABL1 kinase outside the highly conserved ATP binding pocket may be an alternative strategy to restrict drug resistance and limit side effects of ATP-competitive drugs with low selectivity. Our recent work has shown that an allosteric intramolecular interaction of the BCR-ABL1 SH2 domain with its kinase domain is critical for leukemogenesis and can be targeted with an engineered high-affinity binding protein. We have now elucidated the molecular mechanisms responsible for the regulation of BCR-ABL1 kinase activity by its SH2 domain: To this end, we set-up an efficient expression system for the BCR-ABL1 SH2-kinase domain unit in E.coli with excellent yield, purity and activity. Detailed biophysical and biochemical analysis of the purified recombinant proteins in vitro recapitulated SH2-dependent regulation of BCR-ABL1 in CML cells and enabled a quantitative enzymatic analysis of BCR-ABL1 activation. Unexpectedly, we found that the interaction of the SH2 domain with the kinase domain is the critical switch that shifts the BCR-ABL1 activation loop from an otherwise closed to a fully open conformation and enables its autophosphorylation. The activation loop is a central and almost universally used control element that regulates the activity of protein kinases, as the conformation and phosphorylation status of the activation loop determines substrate binding to the active site. In BCR-ABL1, activation loop phosphorylation is required for transformation of fibroblasts and haematopoietic progenitors. We show that the SH2-kinase interaction enables autophosphorylation of the activation loop in trans by rendering a key phosphorylation site (Tyr-412) highly accessible. This requires prior phosphorylation of Tyr-245 in the SH2-kinase linker of BCR-ABL1. Mutational disruption of the SH2-kinase interaction abolished activation loop phosphorylation. Importantly, this effect was independent of the phosphotyrosine binding ability of the SH2 domain, which indicated that the SH2 domain is a true allosteric activator of BCR-ABL1 kinase activity. We also show that the spectrum of tyrosine phosphorylation sites that we mapped by mass spectrometry in vitro were vastly overlapping with the observed BCR-ABL1 phosphorylation sites in CML cells indicating that BCR-ABL1 autophosphorylation might be the major mechanism that determines its cellular phosphorylation status. In summary, our study demonstrates a novel mechanism by which a protein-protein interaction domain may allosterically mediate the transition of an inactive to an active kinase conformation in a key oncoprotein. This work may serve as an archetype to identify further allosteric regulatory mechanisms in other tyrosine kinases that are activated in haematological malignancies and facilitate the development of new allosteric inhibitors targeting oncogenic tyrosine kinases. Disclosures No relevant conflicts of interest to declare.


1991 ◽  
Vol 11 (4) ◽  
pp. 1785-1792 ◽  
Author(s):  
A J Muller ◽  
J C Young ◽  
A M Pendergast ◽  
M Pondel ◽  
N R Landau ◽  
...  

The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.


2000 ◽  
Vol 20 (3) ◽  
pp. 947-956 ◽  
Author(s):  
Min Chen ◽  
Alan Cheng ◽  
Fabio Candotti ◽  
Yong-Jie Zhou ◽  
Anka Hymel ◽  
...  

ABSTRACT The structure of Janus kinases (JAKs) is unique among protein tyrosine kinases in having tandem, nonidentical kinase and pseudokinase domains. Despite its conservation in evolution, however, the function of the pseudokinase domain remains poorly understood. Lack of JAK3 expression results in severe combined immunodeficiency (SCID). In this study, we analyze two SCID patients with mutations in the JAK3 pseudokinase domain, which allows for protein expression but disrupts the regulation of the kinase activity. Specifically, these mutant forms of JAK3 had undetectable kinase activity in vitro but were hyperphosphorylated both in patients' Epstein-Barr virus-transformed B cells and when overexpressed in COS7 cells. Moreover, reconstitution of cells with these mutants demonstrated that, although they were constitutively phosphorylated basally, they were unable to transmit cytokine-dependent signals. Further analysis showed that the isolated catalytic domain of JAK3 was functional whereas either the addition of the pseudokinase domain or its deletion from the full-length molecule reduced catalytic activity. Through coimmunoprecipitation of the isolated pseudokinase domain with the isolated catalytic domain, we provide the first evidence that these two domains interact. Furthermore, whereas the wild-type pseudokinase domain modestly inhibited kinase domain-mediated STAT5 phosphorylation, the patient-derived mutants markedly inhibited this phosphorylation. We thus conclude that the JAK3 pseudokinase domain is essential for JAK3 function by regulating its catalytic activity and autophosphorylation. We propose a model in which this occurs via intramolecular interaction with the kinase domain and that increased inhibition of kinase activity by the pseudokinase domain likely contributes to the disease pathogenesis in these two patients.


1991 ◽  
Vol 11 (4) ◽  
pp. 1785-1792
Author(s):  
A J Muller ◽  
J C Young ◽  
A M Pendergast ◽  
M Pondel ◽  
N R Landau ◽  
...  

The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.


1996 ◽  
Vol 132 (3) ◽  
pp. 427-436 ◽  
Author(s):  
N Cabrera ◽  
E Díaz-Rodríguez ◽  
E Becker ◽  
D Martín-Zanca ◽  
A Pandiella

The extracellular domain of several membrane-anchored proteins can be released as a soluble fragment by the action of a cell surface endoproteolytic system. This cleavage results in the generation of a soluble and a cell-bound fragment. In the case of proteins with signaling capability, such as tyrosine kinase receptors, the cleavage process may have an effect on the kinase activity of the cell-bound receptor fragment. By using several cell lines that express the TrkA neurotrophin receptor, we show that this receptor tyrosine kinase is cleaved by a proteolytic system that mimics the one that acts at the cell surface. TrkA cleavage is regulated by protein kinase C and several receptor agonists (including the TrkA ligand NGF), occurs at the ectodomain in a membrane-proximal region, and is independent of lysosomal function. TrkA cleavage results in the generation of a cell-associated fragment that is phosphorylated on tyrosine residues. Tyrosine phosphorylation of this fragment is not detected in TrkA mutants devoid of kinase activity, suggesting that phosphorylation requires an intact TrkA kinase domain, and is not due to activation of an intermediate intracellular tyrosine kinase. The increased phosphotyrosine content of the cell-bound fragment may thus reflect higher catalytic activity of the truncated fragment. We postulate that cleavage of receptor tyrosine kinases by this naturally occurring cellular mechanism may represent an additional mean for the regulation of receptor activity.


1995 ◽  
Vol 306 (2) ◽  
pp. 465-472 ◽  
Author(s):  
I Leconte ◽  
E Clauser

The tyrosine kinase domain of the human insulin receptor (IR) contains several short amino acid motifs which are strictly conserved in all protein kinases and two sequence motifs which are specific to the tyrosine kinases (AAR or RAA and P(I)/VK/RWT/M). In the serine/threonine kinases these motifs are replaced by the sequences KPE and GT/SXXY/PX respectively. In the present work, the tyrosine kinase-specific sequences of the IR (1134AAR1136 and 1172PVRWM1176) were replaced using site-directed mutagenesis by sequences which confer a serine kinase specificity on the receptor. Five different IR mutants were expressed in Chinese hamster ovary (CHO) or COS cells and their structural and functional properties compared with those of the wild-type recombinant human IR. These mutants are processed normally and bind insulin with normal affinities. None of the mutants containing a putative serine kinase-specific sequence display detectable autophosphorylation or tyrosine kinase activity in response to insulin, either in vitro or in vivo. These mutants were also unable to phosphorylate serine/threonine kinase substrates after insulin stimulation. Unexpectedly, they showed impaired ATP binding, as studied by an original technique consisting of cross-linking adenosine 5′-([35S]thio)triphosphate to partially purified receptors. Finally, none of the studied mutants transmit the insulin signal necessary to stimulate either DNA or glycogen synthesis. These data provide evidence for the importance of these conserved sequences in the kinase domain for both receptor activation and kinase activity. Furthermore, they demonstrate that the exchange of sequences specific to the catalytic domain of tyrosine kinases for those specific to the serine/threonine kinases is not sufficient to confer serine/threonine specificity on the insulin receptor.


2020 ◽  
Vol 21 (19) ◽  
pp. 7277
Author(s):  
Sara Sofia Deville ◽  
Luis Fernando Delgadillo Silva ◽  
Anne Vehlow ◽  
Nils Cordes

The intermediate filament synemin has been previously identified as novel regulator of cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase is involved in both of these processes. Using PamGene technology, we performed a broad-spectrum kinase activity profiling in three-dimensionally, extracellular matrix grown head and neck cancer cell cultures. Upon synemin silencing, we identified 86 deactivated tyrosine kinases, including c-Abl, in irradiated HNSCC cells. Upon irradiation and synemin inhibition, c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 was significantly reduced, prompting us to hypothesize that c-Abl tyrosine kinase is an important signaling component of the synemin-mediated radioresistance pathway. Simultaneous targeting of synemin and c-Abl resulted in similar radiosensitization and DSB repair compared with single synemin depletion, suggesting synemin as an upstream regulator of c-Abl. Immunoprecipitation assays revealed a protein complex formation between synemin and c-Abl pre- and post-irradiation. Upon pharmacological inhibition of ATM, synemin/c-Abl protein-protein interactions were disrupted implying synemin function to depend on ATM kinase activity. Moreover, deletion of the SH2 domain of c-Abl demonstrated a decrease in interaction, indicating the dependency of the protein-protein interaction on this domain. Mechanistically, radiosensitization upon synemin knockdown seems to be associated with an impairment of DNA repair via regulation of non-homologous end joining independent of c-Abl function. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further key determinant of radioresistance downstream of synemin.


2000 ◽  
Vol 20 (10) ◽  
pp. 3387-3395 ◽  
Author(s):  
Pipsa Saharinen ◽  
Kati Takaluoma ◽  
Olli Silvennoinen

ABSTRACT Activation of Jak tyrosine kinases through hematopoietic cytokine receptors occurs as a consequence of ligand-induced aggregation of receptor-associated Jaks and their subsequent autophosphorylation. Jak kinases consist of a C-terminal tyrosine kinase domain, a pseudokinase domain of unknown function, and Jak homology (JH) domains 3 to 7, implicated in receptor-Jak interaction. We analyzed the functional roles of the different protein domains in activation of Jak2. Deletion analysis of Jak2 showed that the pseudokinase domain but not JH domains 3 to 7 negatively regulated the catalytic activity of Jak2 as well as Jak2-mediated activation of Stat5. Phosphorylation of Stat5 by wild-type Jak2 was dependent on the SH2 domain of Stat5; however, this requirement was lost upon deletion of the pseudokinase domain of Jak2. Investigation of the mechanisms of the pseudokinase domain-mediated inhibition of Jak2 suggested that this regulation did not involve protein tyrosine phosphatases. Instead, analysis of interactions between the tyrosine kinase domain and Jak2 suggested that the pseudokinase domain interacted with the kinase domain. Furthermore, coexpression of the pseudokinase domain inhibited the activity of the single tyrosine kinase domain. Finally, deletion of the pseudokinase domain of Jak2 deregulated signal transduction through the gamma interferon receptor by significantly increasing ligand-independent activation of Stat transcription factors. These results indicate that the pseudokinase domain negatively regulates the activity of Jak2, probably through an interaction with the kinase domain, and this regulation is required to keep Jak2 inactive in the absence of ligand stimulation. Furthermore, the pseudokinase domain may have a role in regulation of Jak2-substrate interactions.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 37-37
Author(s):  
Oliver D. Hantschel ◽  
Florian Grebien ◽  
Ines Kaupe ◽  
Boris Kovacic ◽  
John Wojcik ◽  
...  

Abstract Abstract 37 We previously showed that the Abl SH2 domain is an allosteric activator of c-Abl tyrosine kinase activity and substrate phosphorylation (Filippakopoulos et al. (2008) Cell 134(5), 793-803). This effect is exerted directly by docking of the SH2 domain onto the N-lobe of the kinase domain in the active conformation of c-Abl. We also showed that the same structural mechanism is a critical factor for full activation of the oncogenic fusion kinase Bcr-Abl. Disruption of binding of the SH2 domain to the kinase domain in Bcr-Abl by the Ile164Glu mutation in the SH2 domain, led to a strong reduction in in vitro tyrosine kinase activity and Bcr-Abl autophosphorylation. Unexpectedly, we observed a differential attenuation of downstream signaling pathways upon disruption of the SH2-kinase domain interface, indicating different activation thresholds of Bcr-Abl downstream signaling pathways. Here, we show that disrupting the SH2-kinase domain interface abrogates the transforming capacity of Bcr-Abl. Cells expressing the Bcr-Abl Ile164Glu mutant were unable to generate cytokine-independent colonies in vitro. Furthermore, mice transplanted with Bcr-Abl Ile164Glu expressing bone marrow cells did not develop the characteristic MPD-like disease that is caused by wild-type Bcr-Abl. Mice that received Bcr-Abl Ile164Glu cells showed normal survival, blood counts and histology after more than 100 days post-transplant, despite the presence of Bcr-Abl Ile164Glu-expressing cells in all blood lineages. This shows that the formation of the SH2-kinase domain interface is strictly necessary for Bcr-Abl to cause CML. Together with our data that show sensitization to imatinib inhibition of Bcr-Abl Ile164Glu as compared to Bcr-Abl wild-type, this argues for the SH2-kinase domain interface as an additional drug target on Bcr-Abl that may synergize with tyrosine kinase inhibitors and may be useful to inhibit tyrosine kinase inhibitor resistant Bcr-Abl clones. To address possibilities to interfere with the SH2-kinase domain interface, we are using an engineered binding protein that binds to the Abl SH2 domain with high-affinity and specificity and supposedly disrupts the interface with the kinase domain, resulting in a decrease in Bcr-Abl kinase activity. In conclusion, we provide strong evidence that the structural positioning of the SH2 domain is a crucial factor for constitutive activity, signal transduction and leukemogenicity of Bcr-Abl. Besides oligomerization via the N-terminal coiled-coiled domain and loss of the auto-inhibitory N-terminal myristoyl group, the proper positioning of the SH2 domain appears to be another critical factor that is required for constitutive activation of Bcr-Abl. Inhibitors of the SH2-kinase domain interface of Bcr-Abl may comprise alternative or additional points of pharmacological intervention for the treatment of imatinib-sensitive or -resistant CML or Ph+ acute lymphocytic leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document