scholarly journals Introduction of extra telomeric DNA sequences into Saccharomyces cerevisiae results in telomere elongation.

1989 ◽  
Vol 9 (4) ◽  
pp. 1488-1497 ◽  
Author(s):  
K W Runge ◽  
V A Zakian

The termini of Saccharomyces cerevisiae chromosomes consist of tracts of C1-3A (one to three cytosine and one adenine residue) sequences of approximately 450 base pairs in length. To gain insights into trans-acting factors at telomeres, high-copy-number linear and circular plasmids containing tracts of C1-3A sequences were introduced into S. cerevisiae. We devised a novel system to distinguish by color colonies that maintained the vector at 1 to 5, 20 to 50, and 100 to 400 copies per cell and used it to change the amount of telomeric DNA sequences per cell. An increase in the number of C1-3A sequences caused an increase in the length of telomeric C1-3A repeats that was proportional to plasmid copy number. Our data suggest that telomere growth is inhibited by a limiting factor(s) that specifically recognizes C1-3A sequences and that this factor can be effectively competed for by long tracts of C1-3A sequences at telomeres or on circular plasmids. Telomeres without this factor are exposed to processes that serve to lengthen chromosome ends.

1989 ◽  
Vol 9 (4) ◽  
pp. 1488-1497
Author(s):  
K W Runge ◽  
V A Zakian

The termini of Saccharomyces cerevisiae chromosomes consist of tracts of C1-3A (one to three cytosine and one adenine residue) sequences of approximately 450 base pairs in length. To gain insights into trans-acting factors at telomeres, high-copy-number linear and circular plasmids containing tracts of C1-3A sequences were introduced into S. cerevisiae. We devised a novel system to distinguish by color colonies that maintained the vector at 1 to 5, 20 to 50, and 100 to 400 copies per cell and used it to change the amount of telomeric DNA sequences per cell. An increase in the number of C1-3A sequences caused an increase in the length of telomeric C1-3A repeats that was proportional to plasmid copy number. Our data suggest that telomere growth is inhibited by a limiting factor(s) that specifically recognizes C1-3A sequences and that this factor can be effectively competed for by long tracts of C1-3A sequences at telomeres or on circular plasmids. Telomeres without this factor are exposed to processes that serve to lengthen chromosome ends.


1988 ◽  
Vol 8 (11) ◽  
pp. 4642-4650
Author(s):  
A W Murray ◽  
T E Claus ◽  
J W Szostak

We have investigated two reactions that occur on telomeric sequences introduced into Saccharomyces cerevisiae cells by transformation. The elongation reaction added repeats of the yeast telomeric sequence C1-3A to telomeric sequences at the end of linear DNA molecules. The reaction worked on the Tetrahymena telomeric sequence C4A2 and also on the simple repeat CA. The reaction was orientation specific: it occurred only when the GT-rich strand ran 5' to 3' towards the end of the molecule. Telomere elongation occurred by non-template-directed DNA synthesis rather than any type of recombination with chromosomal telomeres, because C1-3A repeats could be added to unrelated DNA sequences between the CA-rich repeats and the terminus of the transforming DNA. The elongation reaction was very efficient, and we believe that it was responsible for maintaining an average telomere length despite incomplete replication by template-directed DNA polymerase. The resolution reaction processed a head-to-head inverted repeat of telomeric sequences into two new telomeres at a frequency of 10(-2) per cell division.


1988 ◽  
Vol 8 (11) ◽  
pp. 4642-4650 ◽  
Author(s):  
A W Murray ◽  
T E Claus ◽  
J W Szostak

We have investigated two reactions that occur on telomeric sequences introduced into Saccharomyces cerevisiae cells by transformation. The elongation reaction added repeats of the yeast telomeric sequence C1-3A to telomeric sequences at the end of linear DNA molecules. The reaction worked on the Tetrahymena telomeric sequence C4A2 and also on the simple repeat CA. The reaction was orientation specific: it occurred only when the GT-rich strand ran 5' to 3' towards the end of the molecule. Telomere elongation occurred by non-template-directed DNA synthesis rather than any type of recombination with chromosomal telomeres, because C1-3A repeats could be added to unrelated DNA sequences between the CA-rich repeats and the terminus of the transforming DNA. The elongation reaction was very efficient, and we believe that it was responsible for maintaining an average telomere length despite incomplete replication by template-directed DNA polymerase. The resolution reaction processed a head-to-head inverted repeat of telomeric sequences into two new telomeres at a frequency of 10(-2) per cell division.


Yeast ◽  
1996 ◽  
Vol 12 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Concetta Compagno ◽  
Danilo Porro ◽  
Stefania Radice ◽  
Enzo Martegani ◽  
Bianca Maria Ranzi

1984 ◽  
Vol 4 (3) ◽  
pp. 407-414
Author(s):  
A Miyajima ◽  
I Miyajima ◽  
K Arai ◽  
N Arai

The R388 plasmid-encoded drug-resistant type II dihydrofolate reductase gene (R . dhfr) was expressed in Saccharomyces cerevisiae by fusing the R . dhfr coding sequence to the yeast TRP5 promoter. Yeast cells harboring these recombinant plasmids grew in media with 10 micrograms of methotrexate per ml and 5 mg of sulfanilamide per ml, a condition which inhibits the growth of wild-type cells. Addition of a 390-base-pair fragment from the 3'-noncoding region of TRP5 downstream from R . dhfr increased expression. Presumably, the added segment promoted termination or polyadenylation or both of the R . dhfr transcript. The activity of the plasmid-encoded dihydrofolate reductase and the copy number of the R . dhfr plasmid in cells grown in drug-selective media were higher by one order of magnitude than those grown in nutrition-selective media. Plasmid copy number, as well as the plasmid-encoded enzyme level, decreased when cells were selected for prototrophy. In drug-selective media, the plasmid-encoded enzyme level and the content of R . dhfr transcripts were nearly constant in cells harboring R . dhfr plasmids containing different yeast promoters. In contrast, the plasmid copy number and beta-lactamase activity encoded in cis by plasmids were much higher when R . dhfr was associated with the weak TRP5 promoter than when it was fused to the strong ADC1 promoter. These results indicate that plasmid copy number, i.e., gene dosage of R . dhfr, correlates inversely with the strength of the promoter associated with R . dhfr, and cells with a higher plasmid copy number were enriched in drug-selective media. The transformation efficiency of R . dhfr fused to the ADC1 promoter was almost the same on drug-selective plates as on nutrition-selective plates, indicating that R . dhfr is suitable as a dominant selective transformation marker in S. cerevisiae.


2005 ◽  
Vol 25 (10) ◽  
pp. 4299-4310 ◽  
Author(s):  
Melanie J. Dobson ◽  
Andrew J. Pickett ◽  
Soundarapandian Velmurugan ◽  
Jordan B. Pinder ◽  
Lori A. Barrett ◽  
...  

ABSTRACT The 2μm circle plasmid confers no phenotype in wild-type Saccharomyces cerevisiae but in a nib1 mutant, an elevated plasmid copy number is associated with cell death. Complementation was used to identify nib1 as a mutant allele of the ULP1 gene that encodes a protease required for removal of a ubiquitin-like protein, Smt3/SUMO, from protein substrates. The nib1 mutation replaces conserved tryptophan 490 with leucine in the protease domain of Ulp1. Complete deletion of ULP1 is lethal, even in a strain that lacks the 2μm circle. Partial deletion of ULP1, like the nib1 mutation, results in clonal variations in plasmid copy number. In addition, a subset of these mutant cells produces lineages in which all cells have reduced proliferative capacity, and this phenotype is dependent upon the presence of the 2μm circle. Segregation of the 2μm circle requires two plasmid-encoded proteins, Rep1 and Rep2, which were found to colocalize with Ulp1 protein in the nucleus and interact with Smt3 in a two-hybrid assay. These associations and the observation of missegregation of a fluorescently tagged 2μm circle reporter plasmid in a subset of ulp1 mutant cells suggest that Smt3 modification plays a role in both plasmid copy number control and segregation.


1987 ◽  
Vol 7 (7) ◽  
pp. 2484-2490
Author(s):  
A Percival-Smith ◽  
J Segall

We found that the introduction into a yeast cell of a high-copy-number plasmid containing the 5' end of the SPS2 gene, a sporulation-specific gene of Saccharomyces cerevisiae, led to a reduction in the efficiency of spore formation. The plasmid pAP290, which contains the sequence from -138 to +152 of the SPS2 gene, caused a fivefold reduction in spore formation; the presence of the plasmid had no effect on transcription of the chromosomal SPS2 gene. A plasmid containing only the sequence upstream of the TATA box of the SPS2 gene (-350 to -68) was unable to inhibit the completion of sporulation, whereas the downstream sequence, from -70 to +404, although unable by itself to inhibit sporulation, could do so when provided with an upstream fragment containing the CYC1 upstream activation sequence. Deletion of 22 base pairs from pAP290, which introduced a frameshift after codon 17 of the SPS2 gene and reduced the open reading frame to 26 amino acids, generated a plasmid (pAP290 delta Pst) which could no longer inhibit sporulation. The SPS2 inserts of pAP290 and pAP290 delta Pst were found to direct equivalent levels of sporulation-specific transcription. We conclude from these results that the presence of both the SPS2 promoter (or a substitute promoter) and the initial coding sequence of the SPS2 gene is required in the high-copy-number plasmid to generate the asporogenous phenotype. We speculate that the accumulation of a protein containing the amino-terminal portion of the SPS2 gene product, synthesized from the transcripts of the truncated plasmid-borne copies of the SPS2 gene, prevents ascus formation.


1987 ◽  
Vol 7 (7) ◽  
pp. 2484-2490 ◽  
Author(s):  
A Percival-Smith ◽  
J Segall

We found that the introduction into a yeast cell of a high-copy-number plasmid containing the 5' end of the SPS2 gene, a sporulation-specific gene of Saccharomyces cerevisiae, led to a reduction in the efficiency of spore formation. The plasmid pAP290, which contains the sequence from -138 to +152 of the SPS2 gene, caused a fivefold reduction in spore formation; the presence of the plasmid had no effect on transcription of the chromosomal SPS2 gene. A plasmid containing only the sequence upstream of the TATA box of the SPS2 gene (-350 to -68) was unable to inhibit the completion of sporulation, whereas the downstream sequence, from -70 to +404, although unable by itself to inhibit sporulation, could do so when provided with an upstream fragment containing the CYC1 upstream activation sequence. Deletion of 22 base pairs from pAP290, which introduced a frameshift after codon 17 of the SPS2 gene and reduced the open reading frame to 26 amino acids, generated a plasmid (pAP290 delta Pst) which could no longer inhibit sporulation. The SPS2 inserts of pAP290 and pAP290 delta Pst were found to direct equivalent levels of sporulation-specific transcription. We conclude from these results that the presence of both the SPS2 promoter (or a substitute promoter) and the initial coding sequence of the SPS2 gene is required in the high-copy-number plasmid to generate the asporogenous phenotype. We speculate that the accumulation of a protein containing the amino-terminal portion of the SPS2 gene product, synthesized from the transcripts of the truncated plasmid-borne copies of the SPS2 gene, prevents ascus formation.


1988 ◽  
Vol 8 (2) ◽  
pp. 875-883 ◽  
Author(s):  
K M Felsenstein ◽  
S W Emmons

Several members of a repetitive DNA family in the nematode Caenorhabditis elegans have been shown to express ARS and centromeric function in Saccharomyces cerevisiae. The repetitive family, denoted CeRep3, consists of dispersed repeated elements about 1 kilobase in length, present 50 to 100 times in the nematode genome. Three elements were sequenced and found to contain DNA sequences homologous to yeast ARS and CEN consensus sequences. Nematode DNA segments containing these repeats were tested for ARS and CEN (or SEG) function after ligation to shuttle vectors and introduction into yeast cells. Such nematode segments conferred ARS function to the plasmid, as judged by an increased frequency of transformation compared with control plasmids without ARS function. Some, but not all, also conferred to the plasmid increased mitotic stability, increased frequency of 2+:2- segregation in meiosis, and decreased plasmid copy number. These effects are similar to those of yeast centromeric DNA. In view of these results, we suggest that the CeRep3 repetitive family may have replication and centromeric functions in C. elegans.


Sign in / Sign up

Export Citation Format

Share Document