scholarly journals Interaction between transcriptional activator protein LAC9 and negative regulatory protein GAL80.

1989 ◽  
Vol 9 (7) ◽  
pp. 2950-2956 ◽  
Author(s):  
J M Salmeron ◽  
S D Langdon ◽  
S A Johnston

In Saccharomyces cerevisiae, transcriptional activation mediated by the GAL4 regulatory protein is repressed in the absence of galactose by the binding of the GAL80 protein, an interaction that requires the carboxy-terminal 28 amino acids of GAL4. The homolog of GAL4 from Kluyveromyces lactis, LAC9, activates transcription in S. cerevisiae and is highly similar to GAL4 in its carboxyl terminus but is not repressed by wild-type levels of GAL80 protein. Here we show that GAL80 does repress LAC9-activated transcription in S. cerevisiae if overproduced. We sought to determine the molecular basis for the difference in the responses of the LAC9 and GAL4 proteins to GAL80. Our results indicate that this difference is due primarily to the fact that under wild-type conditions, the level of LAC9 protein in S. cerevisiae is much higher than that of GAL4, which suggests that LAC9 escapes GAL80-mediated repression by titration of GAL80 protein in vivo. The difference in response to GAL80 is not due to amino acid sequence differences between the LAC9 and GAL4 carboxyl termini. We discuss the implications of these results for the mechanism of galactose metabolism regulation in S. cerevisiae and K. lactis.

1989 ◽  
Vol 9 (7) ◽  
pp. 2950-2956
Author(s):  
J M Salmeron ◽  
S D Langdon ◽  
S A Johnston

In Saccharomyces cerevisiae, transcriptional activation mediated by the GAL4 regulatory protein is repressed in the absence of galactose by the binding of the GAL80 protein, an interaction that requires the carboxy-terminal 28 amino acids of GAL4. The homolog of GAL4 from Kluyveromyces lactis, LAC9, activates transcription in S. cerevisiae and is highly similar to GAL4 in its carboxyl terminus but is not repressed by wild-type levels of GAL80 protein. Here we show that GAL80 does repress LAC9-activated transcription in S. cerevisiae if overproduced. We sought to determine the molecular basis for the difference in the responses of the LAC9 and GAL4 proteins to GAL80. Our results indicate that this difference is due primarily to the fact that under wild-type conditions, the level of LAC9 protein in S. cerevisiae is much higher than that of GAL4, which suggests that LAC9 escapes GAL80-mediated repression by titration of GAL80 protein in vivo. The difference in response to GAL80 is not due to amino acid sequence differences between the LAC9 and GAL4 carboxyl termini. We discuss the implications of these results for the mechanism of galactose metabolism regulation in S. cerevisiae and K. lactis.


Genetics ◽  
1990 ◽  
Vol 125 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J M Salmeron ◽  
K K Leuther ◽  
S A Johnston

Abstract The carboxy-terminal 28 amino acids of the Saccharomyces cerevisiae transcriptional activator protein GAL4 execute two functions--transcriptional activation and interaction with the negative regulatory protein, GAL80. Here we demonstrate that these two functions are separable by single amino acid changes within this region. We determined the sequences of four GAL4C-mutations, and characterized the abilities of the encoded GAL4C proteins to activate transcription of the galactose/melibiose regulon in the presence of GAL80 and superrepressible GAL80S alleles. One of the GAL4C mutations can be compensated by a specific GAL80S mutation, resulting in a wild-type phenotype. These results support the idea that while the GAL4 activation function tolerates at least minor alterations in the GAL4 carboxyl terminus, the GAL80-interactive function is highly sequence-specific and sensitive even to single amino acid alterations. They also argue that the GAL80S mutations affect the affinity of GAL80 for GAL4, and not the ability of GAL80 to bind inducer.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


Genetics ◽  
2002 ◽  
Vol 160 (1) ◽  
pp. 63-73
Author(s):  
Michael J McEachern ◽  
Dana Hager Underwood ◽  
Elizabeth H Blackburn

Abstract Telomerase adds telomeric DNA repeats to telomeric termini using a sequence within its RNA subunit as a template. We characterized two mutations in the Kluyveromyces lactis telomerase RNA gene (TER1) template. Each initially produced normally regulated telomeres. One mutation, ter1-AA, had a cryptic defect in length regulation that was apparent only if the mutant gene was transformed into a TER1 deletion strain to permit extensive replacement of basal wild-type repeats with mutant repeats. This mutant differs from previously studied delayed elongation mutants in a number of properties. The second mutation, TER1-Bcl, which generates a BclI restriction site in newly synthesized telomeric repeats, was indistinguishable from wild type in all phenotypes assayed: cell growth, telomere length, and in vivo telomerase fidelity. TER1-Bcl cells demonstrated that the outer halves of the telomeric repeat tracts turn over within a few hundred cell divisions, while the innermost few repeats typically resisted turnover for at least 3000 cell divisions. Similarly deep but incomplete turnover was also observed in two other TER1 template mutants with highly elongated telomeres. These results indicate that most DNA turnover in functionally normal telomeres is due to gradual replicative sequence loss and additions by telomerase but that there are other processes that also contribute to turnover.


1987 ◽  
Vol 7 (12) ◽  
pp. 4400-4406 ◽  
Author(s):  
K D Breunig ◽  
P Kuger

As shown previously, the beta-galactosidase gene of Kluyveromyces lactis is transcriptionally regulated via an upstream activation site (UASL) which contains a sequence homologous to the GAL4 protein-binding site in Saccharomyces cerevisiae (M. Ruzzi, K.D. Breunig, A.G. Ficca, and C.P. Hollenberg, Mol. Cell. Biol. 7:991-997, 1987). Here we demonstrate that the region of homology specifically binds a K. lactis regulatory protein. The binding activity was detectable in protein extracts from wild-type cells enriched for DNA-binding proteins by heparin affinity chromatography. These extracts could be used directly for DNase I and exonuclease III protection experiments. A lac9 deletion strain, which fails to induce the beta-galactosidase gene, did not contain the binding factor. The homology of LAC9 protein with GAL4 (J.M. Salmeron and S. A. Johnston, Nucleic Acids Res. 14:7767-7781, 1986) strongly suggests that LAC9 protein binds directly to UASL and plays a role similar to that of GAL4 in regulating transcription.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


1999 ◽  
Vol 19 (5) ◽  
pp. 3257-3266 ◽  
Author(s):  
Xiaoya Zeng ◽  
Lihong Chen ◽  
Christine A. Jost ◽  
Ruth Maya ◽  
David Keller ◽  
...  

ABSTRACT The newly identified p53 homolog p73 can mimic the transcriptional activation function of p53. We investigated whether p73, like p53, participates in an autoregulatory feedback loop with MDM2. p73 bound to MDM2 both in vivo and in vitro. Wild-type but not mutant MDM2, expressed in human p53 null osteosarcoma Saos-2 cells, inhibited p73- and p53-dependent transcription driven by the MDM2 promoter-derived p53RE motif as measured in transient-transfection and chloramphenicol acetyltransferase assays and also inhibited p73-induced apoptosis in p53-null human lung adenocarcinoma H1299 cells. MDM2 did not promote the degradation of p73 but instead disrupted the interaction of p73, but not of p53, with p300/CBP by competing with p73 for binding to the p300/CBP N terminus. Both p73α and p73β stimulated the expression of the endogenous MDM2 protein. Hence, MDM2 is transcriptionally activated by p73 and, in turn, negatively regulates the function of this activator through a mechanism distinct from that used for p53 inactivation.


1992 ◽  
Vol 12 (3) ◽  
pp. 1209-1217
Author(s):  
C F Hardy ◽  
D Balderes ◽  
D Shore

RAP1 is an essential sequence-specific DNA-binding protein in Saccharomyces cerevisiae whose binding sites are found in a large number of promoters, where they function as upstream activation sites, and at the silencer elements of the HMR and HML mating-type loci, where they are important for repression. We have examined the involvement of specific regions of the RAP1 protein in both repression and activation of transcription by studying the properties of a series of hybrid proteins containing RAP1 sequences fused to the DNA-binding domain of the yeast protein GAL4 (amino acids 1 to 147). GAL4 DNA-binding domain/RAP1 hybrids containing only the carboxy-terminal third of the RAP1 protein (which lacks the RAP1 DNA-binding domain) function as transcriptional activators of a reporter gene containing upstream GAL4 binding sites. Expression of some hybrids from the strong ADH1 promoter on multicopy plasmids has a dominant negative effect on silencers, leading to either partial or complete derepression of normally silenced genes. The GAL4/RAP1 hybrids have different effects on wild-type and several mutated but functional silencers. Silencers lacking either an autonomously replicating sequence consensus element or the RAP1 binding site are strongly derepressed, whereas the wild-type silencer or a silencer containing a deletion of the binding site for another silencer-binding protein, ABF1, are only weakly affected by hybrid expression. By examining a series of GAL4 DNA-binding domain/RAP1 hybrids, we have mapped the transcriptional activation and derepression functions to specific parts of the RAP1 carboxy terminus.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 17 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M B Sainz ◽  
S A Goff ◽  
V L Chandler

C1 is a transcriptional activator of genes encoding biosynthetic enzymes of the maize anthocyanin pigment pathway. C1 has an amino terminus homologous to Myb DNA-binding domains and an acidic carboxyl terminus that is a transcriptional activation domain in maize and yeast cells. To identify amino acids critical for transcriptional activation, an extensive random mutagenesis of the C1 carboxyl terminus was done. The C1 activation domain is remarkably tolerant of amino acid substitutions, as changes at 34 residues had little or no effect on transcriptional activity. These changes include introduction of helix-incompatible amino acids throughout the C1 activation domain and alteration of most single acidic amino acids, suggesting that a previously postulated amphipathic alpha-helix is not required for activation. Substitutions at two positions revealed amino acids important for transcriptional activation. Replacement of leucine 253 with a proline or glutamine resulted in approximately 10% of wild-type transcriptional activation. Leucine 253 is in a region of C1 in which several hydrophobic residues align with residues important for transcriptional activation by the herpes simplex virus VP16 protein. However, changes at all other hydrophobic residues in C1 indicate that none are critical for C1 transcriptional activation. The other important amino acid in C1 is aspartate 262, as a change to valine resulted in only 24% of wild-type transcriptional activation. Comparison of our C1 results with those from VP16 reveal substantial differences in which amino acids are required for transcriptional activation in vivo by these two acidic activation domains.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document