scholarly journals 16S rRNA Gene Amplicon Sequencing Data from Flooded Rice Paddy Mesocosms Treated with Different Silicon-Rich Soil Amendments

2021 ◽  
Vol 10 (27) ◽  
Author(s):  
Gretchen E. Dykes ◽  
Clara S. Chan ◽  
Angelia L. Seyfferth

How silicon-rich soil amendments impact the microbial community is unresolved. We report 16S rRNA gene sequencing data from flooded rice paddy mesocosms treated with different silicon amendments sampled over the growing season. We generated 11,678 operational taxonomic units (OTUs) and found that microbial communities were significantly different across treatments, time points, and biospheres.

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Marc Crampon ◽  
Coralie Soulier ◽  
Pauline Sidoli ◽  
Jennifer Hellal ◽  
Catherine Joulian ◽  
...  

The demand for energy and chemicals is constantly growing, leading to an increase of the amounts of contaminants discharged to the environment. Among these, pharmaceutical molecules are frequently found in treated wastewater that is discharged into superficial waters. Indeed, wastewater treatment plants (WWTPs) are designed to remove organic pollution from urban effluents but are not specific, especially toward contaminants of emerging concern (CECs), which finally reach the natural environment. In this context, it is important to study the fate of micropollutants, especially in a soil aquifer treatment (SAT) context for water from WWTPs, and for the most persistent molecules such as benzodiazepines. In the present study, soils sampled in a reed bed frequently flooded by water from a WWTP were spiked with diazepam and oxazepam in microcosms, and their concentrations were monitored for 97 days. It appeared that the two molecules were completely degraded after 15 days of incubation. Samples were collected during the experiment in order to follow the dynamics of the microbial communities, based on 16S rRNA gene sequencing for Archaea and Bacteria, and ITS2 gene for Fungi. The evolution of diversity and of specific operating taxonomic units (OTUs) highlighted an impact of the addition of benzodiazepines, a rapid resilience of the fungal community and an evolution of the bacterial community. It appeared that OTUs from the Brevibacillus genus were more abundant at the beginning of the biodegradation process, for diazepam and oxazepam conditions. Additionally, Tax4Fun tool was applied to 16S rRNA gene sequencing data to infer on the evolution of specific metabolic functions during biodegradation. It finally appeared that the microbial community in soils frequently exposed to water from WWTP, potentially containing CECs such as diazepam and oxazepam, may be adapted to the degradation of persistent contaminants.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Stephanie D. Jurburg ◽  
Maximilian Konzack ◽  
Nico Eisenhauer ◽  
Anna Heintz-Buschart

AbstractAs DNA sequencing has become more popular, the public genetic repositories where sequences are archived have experienced explosive growth. These repositories now hold invaluable collections of sequences, e.g., for microbial ecology, but whether these data are reusable has not been evaluated. We assessed the availability and state of 16S rRNA gene amplicon sequences archived in public genetic repositories (SRA, EBI, and DDJ). We screened 26,927 publications in 17 microbiology journals, identifying 2015 16S rRNA gene sequencing studies. Of these, 7.2% had not made their data public at the time of analysis. Among a subset of 635 studies sequencing the same gene region, 40.3% contained data which was not available or not reusable, and an additional 25.5% contained faults in data formatting or data labeling, creating obstacles for data reuse. Our study reveals gaps in data availability, identifies major contributors to data loss, and offers suggestions for improving data archiving practices.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257471
Author(s):  
Charles Carr ◽  
Hannah Wilcox ◽  
Jeremy P. Burton ◽  
Sharanya Menon ◽  
Kait F. Al ◽  
...  

16S rRNA gene sequencing of DNA extracted from clinically uninfected hip and knee implant samples has revealed polymicrobial populations. However, previous studies assessed 16S rRNA gene sequencing as a technique for the diagnosis of periprosthetic joint infections, leaving the microbiota of presumed aseptic hip and knee implants largely unstudied. These communities of microorganisms might play important roles in aspects of host health, such as aseptic loosening. Therefore, this study sought to characterize the bacterial composition of presumed aseptic joint implant microbiota using next generation 16S rRNA gene sequencing, and it evaluated this method for future investigations. 248 samples were collected from implants of 41 patients undergoing total hip or knee arthroplasty revision for presumed aseptic failure. DNA was extracted using two methodologies—one optimized for high throughput and the other for human samples—and amplicons of the V4 region of the 16S rRNA gene were sequenced. Sequencing data were analyzed and compared with ancillary specific PCR and microbiological culture. Computational tools (SourceTracker and decontam) were used to detect and compensate for environmental and processing contaminants. Microbial diversity of patient samples was higher than that of open-air controls and differentially abundant taxa were detected between these conditions, possibly reflecting a true microbiota that is present in clinically uninfected joint implants. However, positive control-associated artifacts and DNA extraction methodology significantly affected sequencing results. As well, sequencing failed to identify Cutibacterium acnes in most culture- and PCR-positive samples. These challenges limited characterization of bacteria in presumed aseptic implants, but genera were identified for further investigation. In all, we provide further support for the hypothesis that there is likely a microbiota present in clinically uninfected joint implants, and we show that methods other than 16S rRNA gene sequencing may be ideal for its characterization. This work has illuminated the importance of further study of microbiota of clinically uninfected joint implants with novel molecular and computational tools to further eliminate contaminants and artifacts that arise in low bacterial abundance samples.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Isabel Abellan-Schneyder ◽  
Andrea Janina Schusser ◽  
Klaus Neuhaus

Abstract Background One limiting factor of short amplicon 16S rRNA gene sequencing approaches is the use of low DNA amounts in the amplicon generation step. Especially for low-biomass samples, insufficient or even commonly undetectable DNA amounts can limit or prohibit further analysis in standard protocols. Results Using a newly established protocol, very low DNA input amounts were found sufficient for reliable detection of bacteria using 16S rRNA gene sequencing compared to standard protocols. The improved protocol includes an optimized amplification strategy by using a digital droplet PCR. We demonstrate how PCR products are generated even when using very low concentrated DNA, unable to be detected by using a Qubit. Importantly, the use of different 16S rRNA gene primers had a greater effect on the resulting taxonomical profiles compared to using high or very low initial DNA amounts. Conclusion Our improved protocol takes advantage of ddPCR and allows faithful amplification of very low amounts of template. With this, samples of low bacterial biomass become comparable to those with high amounts of bacteria, since the first and most biasing steps are the same. Besides, it is imperative to state DNA concentrations and volumes used and to include negative controls indicating possible shifts in taxonomical profiles. Despite this, results produced by using different primer pairs cannot be easily compared.


2020 ◽  
Vol 15 (1) ◽  
pp. 228-244
Author(s):  
Tatyana Zamkovaya ◽  
Jamie S. Foster ◽  
Valérie de Crécy-Lagard ◽  
Ana Conesa

AbstractMicrobes compose most of the biomass on the planet, yet the majority of taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter,” represent a major challenge for biology. To understand the ecological contributions of these Unknown taxa, it is essential to first understand the relationship between unknown species, neighboring microbes, and their respective environment. Here, we establish a method to study the ecological significance of “microbial dark matter” by building microbial co-occurrence networks from publicly available 16S rRNA gene sequencing data of four extreme aquatic habitats. For each environment, we constructed networks including and excluding unknown organisms at multiple taxonomic levels and used network centrality measures to quantitatively compare networks. When the Unknown taxa were excluded from the networks, a significant reduction in degree and betweenness was observed for all environments. Strikingly, Unknown taxa occurred as top hubs in all environments, suggesting that “microbial dark matter” play necessary ecological roles within their respective communities. In addition, novel adaptation-related genes were detected after using 16S rRNA gene sequences from top-scoring hub taxa as probes to blast metagenome databases. This work demonstrates the broad applicability of network metrics to identify and prioritize key Unknown taxa and improve understanding of ecosystem structure across diverse habitats.


Data in Brief ◽  
2021 ◽  
pp. 107770
Author(s):  
Julia Galeeva ◽  
Vladislav Babenko ◽  
Ramiz Bakhtyev ◽  
Vladimir Baklaushev ◽  
Larisa Balykova ◽  
...  

Author(s):  
Daniel Straub ◽  
Nia Blackwell ◽  
Adrian Langarica Fuentes ◽  
Alexander Peltzer ◽  
Sven Nahnsen ◽  
...  

AbstractOne of the major methods to identify microbial community composition, to unravel microbial population dynamics, and to explore microbial diversity in environmental samples is DNA- or RNA-based 16S rRNA (gene) amplicon sequencing. Subsequent bioinformatics analyses are required to extract valuable information from the high-throughput sequencing approach. However, manifold bioinformatics tools complicate their choice and might cause differences in data interpretation, making the selection of the pipeline a crucial step.Here, we compared the performance of most widely used 16S rRNA gene amplicon sequencing analysis tools (i.e. Mothur, QIIME1, QIIME2, and MEGAN) using mock datasets and environmental samples from contrasting terrestrial and freshwater sites. Our results showed that QIIME2 outcompeted all other investigated tools in sequence recovery (>10 times less false positives), taxonomic assignments (>22% better F-score) and diversity estimates (>5% better assessment), while there was still room for improvement e.g. imperfect sequence recovery (recall up to 87%) or detection of additional false sequences (precision up to 72%). Furthermore, we found that microbial diversity estimates and highest abundant taxa varied among analysis pipelines (i.e. only one in five genera was shared among all analysis tools) when analyzing environmental samples, which might skew biological conclusions.Our findings were subsequently implemented in a high-performance computing conformant workflow following the FAIR (Findable, Accessible, Interoperable, and Re-usable) principle, allowing reproducible 16S rRNA gene amplicon sequence analysis starting from raw sequence files. Our presented workflow can be utilized for future studies, thereby facilitating the analysis of high-throughput DNA- or RNA-based 16S rRNA (gene) sequencing data substantially.ImportanceMicroorganisms play an essential role in biogeochemical cycling events across the globe. Phylogenetic marker gene analysis is a widely used method to explore microbial community dynamics in space and time, to predict the ecological relevance of microbial populations, or to identify microbial key players in biogeochemical cycles. Several computational analysis methods were developed to aid 16S rRNA gene analysis but choosing the best method is not trivial. In this study, we compared popular analysis methods (i.e. Mothur, QIIME1 and 2, and MEGAN) using samples with known microbial composition (i.e. mock community samples) and environmental samples from contrasting habitats (i.e. groundwater, soil, sediment, and river water). Our findings provide guidance for choosing the currently optimal 16S rRNA gene sequencing analysis method and we implemented our recommended pipeline into a reproducible workflow, which follows highest bioinformatics standards and is open source and free to use.


Sign in / Sign up

Export Citation Format

Share Document