scholarly journals Genome Sequences of Novel Azospirillum sp. Strains B21 and Sh1, Isolated from Raised Sphagnum Bogs, and Type Strains Azospirillum lipoferum 59b and Azospirillum oryzae COC8

2019 ◽  
Vol 8 (43) ◽  
Author(s):  
Denis S. Grouzdev ◽  
Ekaterina N. Tikhonova ◽  
Irina K. Kravchenko

Here, we report the genomic sequences of the novel Azospirillum sp. strains B21 and Sh1, isolated from raised bogs, along with the genome sequences of Azospirillum lipoferum 59bT, the type species of the genus, and Azospirillum oryzae COC8T, which were analyzed to get more knowledge about the genus Azospirillum.

2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1501-1506 ◽  
Author(s):  
Bacem Mnasri ◽  
Tian Yan Liu ◽  
Sabrine Saidi ◽  
Wen Feng Chen ◽  
Wen Xin Chen ◽  
...  

Three microbial strains isolated from common beans, 23C2T (Tunisia), Gr42 (Spain) and IE4868 (Mexico), which have been identified previously as representing a genomic group closely related to Rhizobium gallicum , are further studied here. Their 16S rRNA genes showed 98.5–99 % similarity with Rhizobium loessense CCBAU 7190BT, R. gallicum R602spT, Rhizobium mongolense USDA 1844T and Rhizobium yanglingense CCBAU 71623T. Phylogenetic analysis based on recA, atpD, dnaK and thrC sequences showed that the novel strains were closely related and could be distinguished from the four type strains of the closely related species. Strains 23C2T, Gr42 and IE4868 could be also differentiated from their closest phylogenetic neighbours by their phenotypic and physiological properties and their fatty acid contents. All three strains harboured symbiotic genes specific to biovar gallicum. Levels of DNA–DNA relatedness between strain 23C2T and the type strains of R. loessense , R. mongolense , R. gallicum and R. yanglingense ranged from 58.1 to 61.5 %. The DNA G+C content of the genomic DNA of strain 23C2T was 59.52 %. On the basis of these data, strains 23C2T, Gr42 and IE4868 were considered to represent a novel species of the genus Rhizobium for which the name Rhizobium azibense is proposed. Strain 23C2T ( = CCBAU 101087T = HAMBI3541T) was designated as the type strain.


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3269-3273 ◽  
Author(s):  
Wen-Yong Zhu ◽  
Jin-Li Zhang ◽  
Yu-Li Qin ◽  
Zi-Jun Xiong ◽  
Dao-Feng Zhang ◽  
...  

A novel endophytic actinobacterium, designated strain YIM 68236T, was isolated from healthy leaves of Camptotheca acuminata. and characterized by using a polyphasic approach. Cells of this strain occurred singly, in pairs or in tetrads. It grew at 10–45 °C, at pH 5.0–8.0 (optimum pH 7.0) and in the presence of 0–3 % (w/v) NaCl. The DNA G+C content was 71.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 68236T belongs to the genus Blastococcus . However, it differed from its closest relatives, Blastococcus aggregatus DSM 4725T, Blastococcus saxobsidens DSM 44509T and Blastococcus jejuensis DSM 19597T in many phenotypic characteristics. Moreover, the DNA–DNA relatedness values between the novel isolate and the three above-mentioned type strains were 49.0±1.6 %, 46.1±3.2 % and 39.8±1.5 %, respectively. Based on comparative analysis of physiological and chemotaxonomic data, strain YIM 68236T represents a novel species of the genus Blastococcus , for which the name Blastococcus endophyticus sp. nov. is proposed. The type strain is YIM 68236T ( = CCTCC AA 209045T = DSM 45413T = KCTC 19998T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 1908-1913 ◽  
Author(s):  
Byung-Yong Kim ◽  
Xiaoying Rong ◽  
Tiago D. Zucchi ◽  
Avinash N. V. Bonda ◽  
Ying Huang ◽  
...  

The taxonomic positions of three streptomycetes isolated from a soil sample from a hay meadow were determined using a polyphasic approach. The isolates had chemical and morphological properties typical of the genus Streptomyces and, in phylogenetic analyses based on 16S rRNA gene sequences, formed a distinct subclade that was most closely related to the Streptomyces prasinus subclade. DNA–DNA relatedness studies showed that the novel strains belonged to three different genomic species. The novel strains could be distinguished from one another and from the type strains of the species classified in the S. prasinus subclade using a combination of genotypic and phenotypic properties. On the basis of these data, it is proposed that the novel strains be assigned to the genus Streptomyces as Streptomyces herbaceus sp. nov., Streptomyces incanus sp. nov. and Streptomyces pratens sp. nov., with BK119T ( = KACC 21001T  = CGMCC 4.5797T), BK128T ( = KACC 21002T  = CGMCC 4.5799T) and BK138T ( = KACC 20904T  = CGMCC 4.5800T) as the respective type strains.


2020 ◽  
Vol 70 (5) ◽  
pp. 3340-3347 ◽  
Author(s):  
Soon Dong Lee ◽  
In Seop Kim ◽  
Peter Schumann ◽  
Gwanpil Song

A novel Gram-stain-positive, actinobacterial strain, designated C5-26T, was isolated from soil from a natural cave in Jeju, Republic of Korea, and its taxonomic position was investigated using a polyphasic approach. The organism was aerobic, and cells were non-spore-forming, non-motile cocci that occurred singly, in pairs, in triplets, in tetrads, in short chains or in irregular clusters. Colonies of the cells were circular, convex, entire and white. The peptidoglycan type was A4α with an l-Ser–d-Asp interpeptide bridge. The whole-cell sugars comprised glucose, rhamnose, mannose, arabinose, galactose and ribose. The major menaquinone was MK-8(H4). The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unidentified phospholipid. The major fatty acids were iso-C16 : 0 and iso-C16 : 1 h. The size of the draft genome was 5.32 Mbp with depth of coverage of 161×. The G+C content of the genomic DNA was 67.1 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel isolate belonged to the family Dermacoccaceae and formed a distinct subcluster at the base of the radiation of the genus Luteipulveratus . Highest sequence similarities of the novel isolate were found to the type strains of Luteipulveratus halotolerans (96.2 %), Branchiibius hedensis (95.4 %), Luteipulveratus mongoliensis (95.4 %) and Branchiibius cervicis (95.3 %). The whole genome-based phylogeny supported the novelty of the isolate at the genus level in the family Dermacoccaceae . On the basis of data from this polyphasic study, strain C5-26T (=KCTC 39632T=DSM 108676T) represents a novel species of a new genus in the family Dermacoccaceae , for which the name Leekyejoonella antrihumi gen. nov., sp. nov. is proposed.


2020 ◽  
Vol 70 (5) ◽  
pp. 3547-3552 ◽  
Author(s):  
Mari Tohya ◽  
Shin Watanabe ◽  
Tatsuya Tada ◽  
Htay Htay Tin ◽  
Teruo Kirikae

This study was conducted to clarify the taxonomic status of the species Pseudomonas fuscovaginae and Pseudomonas shirazica . Whole genome sequences for the type strains of P. fuscovaginae and P. shirazica were compared against the closely related type strains of the Pseudomonas putida group and the Pseudomonas fluorescens group species. Average nucleotide identity and digital DNA–DNA hybridization values between P. fuscovaginae LMG 2158T and Pseudomonas asplenii ATCC 23835T were 98.4 and 85.5 %, and between P. shirazica VM14T and Pseudomonas asiatica RYU5T were 99.3 and 95.3 %. These values were greater than recognized thresholds for bacterial species delineation, indicating that they belong to the same genomospecies, respectively. Therefore, P. fuscovaginae and P. shirazica should be reclassified as later heterotypic synonyms of P. asplenii and P. asiatica , respectively.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 3013-3017 ◽  
Author(s):  
Chung-Yi Wang ◽  
Sz-Jie Wu ◽  
Chang-Chai Ng ◽  
Wen-Sheng Tzeng ◽  
Yuan-Tay Shyu

A Gram-staining negative, motile, non-spore-forming, short rod-shaped (0.8–1.5×1.5–2.0 µm), halophilic bacterium, designated strain NTU-107T, was isolated from brine samples collected from the abandoned Beimen saltern in southern Taiwan. The novel strain grew with 0–15 % (w/v) NaCl (optimum between 5 % and 10 %), at 15–55 °C (optimum 40 °C) and at pH 5.5–9.5 (optimum pH 7.5). The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C19 : 0 cyclo ω8c, the genomic DNA G+C content was 66.5 mol%, and the predominant ubiquinone was Q-9. The major polar lipids included phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine. In a phylogenetic analysis based on 16S rRNA gene sequences, strain NTU-107T clustered with members of the genus Halomonas . In hybridization experiments, however, the levels of DNA–DNA relatedness between strain NTU-107T and the type strains of its closest phylogenetic neighbours ( Halomonas koreensis , H. organivorans and H. ventosae ) were all found to be less than 40 %. Based on the phenotypic, chemotaxonomic and genetic data, strain NTU-107T represents a novel species within the genus Halomonas , for which the name Halomonas beimenensis sp. nov. is proposed. The type strain is NTU-107T ( = BCRC 17999T = KCTC 22876T = JCM 16084T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3361-3373 ◽  
Author(s):  
Xiao-meng Lv ◽  
Min Yang ◽  
Li-rong Dai ◽  
Bo Tu ◽  
Chen Chang ◽  
...  

A novel obligately anaerobic, thermophilic and formate-utilizing bacterium K32T was isolated from Shengli oilfield of China. Cells were straight rods (0.4–0.8 µm × 2.5–8.0 µm), Gram-stain-positive, non-spore-forming and slightly motile. Optimum growth occurred with pH of 7 and 0.5 g l–1 NaCl under temperature of 55–60 °C. Nitrate could be reduced into nitrite, syntrophic formate oxidation to methane and carbon dioxide occurred when co-culturing strain K32T and Methanothermobacter thermautotrophicus ΔH. The main cellular fatty acids were iso-C15 : 0 (24.0 %), anteiso-C15 : 0 (21.7 %), C16 : 0 (12.7 %) and C14 : 0 (10.8 %), and the main polar lipid was phosphatidylglycerol. The G+C content of the genomic DNA was 46.3 mol%. The 16S rRNA gene sequence of K32T shared ≤90.4 % of sequence similarity to closest type strains of Desulfitibacter alkalitolerans , Calderihabitans maritimus and members of the genus Moorella . Based on the phenotypic, biochemical and genotypic characterization, Zhaonella formicivorans gen. nov., sp. nov. is proposed with K32T (=CCAM 584T =DSM 107278T=CGMCC1.5297T) as the type strain, which is the first representative of Zhaonellaceae fam. nov. In addition, the order Thermoanaerobacterales and family Peptococcaceae were reclassified, and three novel families in the novel order of Moorellales ord. nov. were also proposed.


2020 ◽  
Vol 70 (7) ◽  
pp. 4212-4216 ◽  
Author(s):  
Yu Jie Lu ◽  
Yuh Morimoto ◽  
Mari Tohya ◽  
Tomomi Hishinuma ◽  
Keiichi Hiramatsu ◽  
...  

An aerobic, Gram-stain-negative, rod-shaped bacterial strain, IzPS43_3003T, was isolated from Izu Oshima, an active volcanic island located 22 km east of the Izu Peninsula, Japan. The sequence of its 16S rRNA gene indicated that IzPS43_3003T belongs to the Pseudomonas fluorescens lineage, with its sequence being most similar to that of Pseudomonas vancouverensis DhA-51T (99.79 %). Phylogenetic analysis based on whole genome sequences showed that IzPS43_3003T was a member of the Pseudomonas jessenii subgroup. The average nucleotide identity values and genome-to genome distances between the whole genome sequences of IzPS43_3003T and other type strains showed that the highest correlations were with Pseudomonas moorei DSM 12647T (87.3 and 33.5% respectively). These genotypic and phenotypic analyses indicated that IzPS43_3003T belongs to a novel species, Pseudomonas izuensis sp. nov. Its type strain is IzPS43_3003T (=LMG 31527T,=CECT 9963T).


2019 ◽  
Vol 69 (4) ◽  
pp. 998-1000 ◽  
Author(s):  
Wenjing Wu ◽  
Zhiyong Zong

The aim of this study was to further clarify the taxonomic relationship between the two recently described bacterial species, Lelliottia jeotgali sp. nov. and Lelliottia aquatilis sp. nov. Whole genome sequences of types strains of the two species are available for analysis. Average nucleotide identity (ANI) and in silico DNA–DNA hybridization (isDDH) values between the two type strains were determined. The ANI and isDDH values between type strains of the two species are 98.7 and 91.0 %, respectively, which are higher than cut-offs to define a bacterial species. It is therefore clear that the two species actually belong to the same species. The name of L.aquatilis was published at an earlier date than that of L. aquatilis . We therefore propose that L. aquatilis is a later heterotypic synonym of L. jeotgali .


Sign in / Sign up

Export Citation Format

Share Document