scholarly journals Erratum for Riccio et al., “Characterization of Sex Differences in Ocular Herpes Simplex Virus 1 Infection and Herpes Stromal Keratitis Pathogenesis of Wild-Type and Herpesvirus Entry Mediator Knockout Mice”

mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Rachel E. Riccio ◽  
Seo J. Park ◽  
Richard Longnecker ◽  
Sarah J. Kopp
mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Rachel E. Riccio ◽  
Seo J. Park ◽  
Richard Longnecker ◽  
Sarah J. Kopp

ABSTRACTSex differences related to immune response and inflammation play a role in the susceptibility and pathogenesis of a variety of viral infections and disease (S. L. Klein, Bioessays 34:1050–1059, 2012,https://doi.org/10.1002/bies.201200099). Herpes simplex virus 1 (HSV-1) causes chronic inflammatory disease in the cornea, an immune-privileged tissue, resulting in irreversible damage and blindness in affected individuals (A. Rowe, A. St Leger, S. Jeon, D. K. Dhaliwal, et al., Prog Retin Eye Res 32:88–101, 2013,https://doi.org/10.1016/j.preteyeres.2012.08.002). Our research focuses on the role of herpesvirus entry mediator (HVEM) as an immune regulator during ocular HSV-1 infection. Mice lacking HVEM (HVEM knockout [KO] mice) exhibit lower levels of immune cell infiltrates and less severe ocular disease in the cornea than wild-type (WT) mice. As sex differences contribute to pathogenesis in many inflammatory diseases, we tested whether sex acts as a biological variable in the immune response to HSV-1 infection and herpes stromal keratitis (HSK) pathogenesis. Adult male and female WT and HVEM KO mice were inoculated with HSV-1 via corneal scarification and monitored daily for disease course. Viral titers were determined, and immune cell infiltrates were collected and analyzed. Our results indicated no significant differences in viral titers in tear film or affected tissues, in immune cell infiltration, or in clinical symptoms between males and females of either genotype. These results suggest that sex is not a significant biological variable in this experimental model and that male and female mice of the C57BL/6 background can be used similarly in studies of ocular HSV-1 pathogenesis.IMPORTANCESex hormones have come to be considered an important factor for the development of certain diseases only recently and as such should continue to be considered a biological variable. Ocular HSV-1, and the resulting HSK, is the leading cause of infectious blindness worldwide. We compared levels of ocular HSV-1 infection and pathogenesis in the two sexes and found no significance differences between male and female WT mice or HVEM KO mice.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Shaohui Wang ◽  
Alexander V. Ljubimov ◽  
Ling Jin ◽  
Klaus Pfeffer ◽  
Mitchell Kronenberg ◽  
...  

ABSTRACTRecently, we reported that the herpesvirus entry mediator (HVEM; also called TNFRSF14 or CD270) is upregulated by the latency-associated transcript (LAT) of herpes simplex virus 1 (HSV-1) and that the absence of HVEM affects latency reactivation but not primary infection in ocularly infected mice. gD has been shown to bind to HVEM. LIGHT (TNFSF14), CD160, and BTLA (B- and T-lymphocyte attenuator) also interact with HVEM and can interfere with HSV gD binding. It was not known if LIGHT, CD160, or BTLA affected the level of latency reactivation in the trigeminal ganglia (TG) of latently infected mice. To address this issue, we ocularly infected LIGHT−/−, CD160−/−, and BTLA−/−mice with LAT(+) and LAT(−) viruses, using similarly infected wild-type (WT) and HVEM−/−mice as controls. The amount of latency, as determined by the levels of gB DNA in the TG of the LIGHT−/−, CD160−/−, and BTLA−/−mice infected with either LAT(+) or LAT(−) viruses, was lower than that in WT mice infected with LAT(+) virus and was similar in WT mice infected with LAT(−) virus. The levels of LAT RNA in HVEM−/−, LIGHT−/−, CD160−/−, and BTLA−/−mice infected with LAT(+) virus were similar and were lower than the levels of LAT RNA in WT mice. However, LIGHT−/−, CD160−/−, and BTLA−/−mice, independent of the presence of LAT, had levels of reactivation similar to those of WT mice infected with LAT(+) virus. Faster reactivation correlated with the upregulation of HVEM transcript. The LIGHT−/−, CD160−/−, and BTLA−/−mice had higher levels of HVEM expression, and this, along with the absence of BTLA, LIGHT, or CD160, may contribute to faster reactivation, while the absence of each molecule, independent of LAT, may have contributed to lower latency. This study suggests that, in the absence of competition with gD for binding to HVEM, LAT RNA is important for WT levels of latency but not for WT levels of reactivation.IMPORTANCEThe effects of BTLA, LIGHT, and CD160 on latency reactivation are not known. We show here that in BTLA, LIGHT, or CD160 null mice, latency is reduced; however, HVEM expression is upregulated compared to that of WT mice, and this upregulation is associated with higher reactivation that is independent of LAT but dependent on gD expression. Thus, one of the mechanisms by which BTLA, LIGHT, and CD160 null mice enhance reactivation appears to be the increased expression of HVEM in the presence of gD. Thus, our results suggest that blockade of HVEM-LIGHT-BTLA-CD160 contributes to reduced HSV-1 latency and reactivation.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Rebecca G. Edwards ◽  
Sarah J. Kopp ◽  
Andrew H. Karaba ◽  
Douglas R. Wilcox ◽  
Richard Longnecker

ABSTRACTOcular herpes simplex virus 1 (HSV-1) infection leads to a potentially blinding immunoinflammatory syndrome, herpes stromal keratitis (HSK). Herpesvirus entry mediator (HVEM), a widely expressed tumor necrosis factor (TNF) receptor superfamily member with diverse roles in immune signaling, facilitates viral entry through interactions with viral glycoprotein D (gD) and is important for HSV-1 pathogenesis. We subjected mice to corneal infection with an HSV-1 mutant in which HVEM-mediated entry was specifically abolished and found that the HVEM-entry mutant produced clinical disease comparable to that produced by the control virus. HVEM-mediated induction of corneal cytokines, which correlated with an HVEM-dependent increase in levels of corneal immune cell infiltrates, was also gD independent. Given the complexity of HVEM immune signaling, we used hematopoietic chimeric mice to determine which HVEM-expressing cells mediate HSV-1 pathogenesis in the eye. Regardless of whether the donor was a wild-type (WT) or HVEM knockout (KO) strain, HVEM KO recipients were protected from ocular HSV-1, suggesting that HVEM on radiation-resistant cell types, likely resident cells of the cornea, confers wild-type-like susceptibility to disease. Together, these data indicate that HVEM contributes to ocular pathogenesis independently of entry and point to an immunomodulatory role for this protein specifically on radiation-resistant cells.IMPORTANCEImmune privilege is maintained in the eye in order to protect specialized ocular tissues, such as the translucent cornea, from vision-reducing damage. Ocular herpes simplex virus 1 (HSV-1) infection can disrupt this immune privilege, provoking a host response that ultimately brings about the majority of the damage seen with the immunoinflammatory syndrome herpes stromal keratitis (HSK). Our previous work has shown that HVEM, a host TNF receptor superfamily member that also serves as a viral entry receptor, is a critical component contributing to ocular HSV-1 pathogenesis, although its precise role in this process remains unclear. We hypothesized that HVEM promotes an inflammatory microenvironment in the eye through immunomodulatory actions, enhancing disease after ocular inoculation of HSV-1. Investigating the mechanisms responsible for orchestrating this aberrant immune response shed light on the initiation and maintenance of HSK, one of the leading causes of infectious blindness in the developed world.


mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Seo J. Park ◽  
Rachel E. Riccio ◽  
Sarah J. Kopp ◽  
Igal Ifergan ◽  
Stephen D. Miller ◽  
...  

ABSTRACT Ocular herpes simplex virus 1 (HSV-1) infection leads to an immunopathogenic disease called herpes stromal keratitis (HSK), in which CD4+ T cell-driven inflammation contributes to irreversible damage to the cornea. Herpesvirus entry mediator (HVEM) is an immune modulator that activates stimulatory and inhibitory cosignals by interacting with its binding partners, LIGHT (TNFSF14), BTLA (B and T lymphocyte attenuator), and CD160. We have previously shown that HVEM exacerbates HSK pathogenesis, but the involvement of its binding partners and its connection to the pathogenic T cell response have not been elucidated. In this study, we investigated the role of HVEM and its binding partners in mediating the T cell response using a murine model of ocular HSV-1 infection. By infecting mice lacking the binding partners, we demonstrated that multiple HVEM binding partners were required for HSK pathogenesis. Surprisingly, while LIGHT−/−, BTLA−/−, and CD160−/− mice did not show differences in disease compared to wild-type mice, BTLA−/− LIGHT−/− and CD160−/− LIGHT−/− double knockout mice showed attenuated disease characterized by decreased clinical symptoms, increased retention of corneal sensitivity, and decreased infiltrating leukocytes in the cornea. We determined that the attenuation of disease in HVEM−/−, BTLA−/− LIGHT−/−, and CD160−/− LIGHT−/− mice correlated with a decrease in gamma interferon (IFN-γ)-producing CD4+ T cells. Together, these results suggest that HVEM cosignaling through multiple binding partners induces a pathogenic Th1 response to promote HSK. This report provides new insight into the mechanism of HVEM in HSK pathogenesis and highlights the complexity of HVEM signaling in modulating the immune response following ocular HSV-1 infection. IMPORTANCE Herpes simplex virus 1 (HSV-1), a ubiquitous human pathogen, is capable of causing a progressive inflammatory ocular disease called herpes stromal keratitis (HSK). HSV-1 ocular infection leads to persistent inflammation in the cornea resulting in outcomes ranging from significant visual impairment to complete blindness. Our previous work showed that herpesvirus entry mediator (HVEM) promotes the symptoms of HSK independently of viral entry and that HVEM expression on CD45+ cells correlates with increased infiltration of leukocytes into the cornea during the chronic inflammatory phase of the disease. Here, we elucidated the role of HVEM in the pathogenic Th1 response following ocular HSV-1 infection and the contribution of HVEM binding partners in HSK pathogenesis. Investigating the molecular mechanisms of HVEM in promoting corneal inflammation following HSV-1 infection improves our understanding of potential therapeutic targets for HSK.


2019 ◽  
Author(s):  
Rachel E Riccio ◽  
Seo J Park ◽  
Richard M Longnecker ◽  
Sarah J Kopp

ABSTRACTSex differences related to immune response and inflammation play a role in the susceptibility and pathogenesis of a variety of viral infections and disease (S. L. Klein, Bioessays 34:1050-9, 2012). Herpes simplex virus type 1 (HSV-1) causes chronic inflammatory disease in the cornea, an immune privileged tissue, resulting in irreversible damage and blindness in affected individuals (A. Rowe, A. St Leger, S. Jeon, D. K. Dhaliwal, J. E. Knickelbein, and E. Vilain, Prog Retin Eye Res 32:88-101, 2013). Our research focuses on the role of Herpes Viral Entry Mediator (HVEM) as an immune regulator during ocular HSV-1 infection. Mice lacking HVEM (HVEM KO) exhibit lower immune cell infiltrates and less severe ocular disease in the cornea compared to wild type (WT) mice. As sex differences contribute to pathogenesis in many inflammatory diseases, we tested sex as a biological variable in the immune response to HSV-1 infection and Herpes Stromal Keratitis pathogenesis (HSK). Adult male and female WT and HVEM KO mice were inoculated with HSV-1 via corneal scarification and monitored daily for disease course. Viral titers and immune cell infiltrates were collected and analyzed. Our results indicate no significant difference in viral titers in tear film or affected tissues; immune cell infiltration; or clinical symptoms between males and females of either genotype. These results suggest that sex is not a significant biological variable in this experimental model, and that male and female mice can similarly be used in studies of ocular HSV-1 pathogenesis.IMPORTANCESex hormones have only recently been considered as an important factor for the development of certain diseases and as such should continue to be considered as a biological variable. Ocular Herpesvirus Type 1 (HSV-1), and the resulting Herpes Stromal Keratitis, is the leading cause of infectious blindness worldwide. We compared ocular HSV-1 infection and pathogenesis between sexes and found no significance difference between male and female wild type mice or herpesvirus entry mediator knockout mice. Therefore, male and female mice can be used interchangeably in studying ocular HSV-1 pathogenesis.


1998 ◽  
Vol 177 (2) ◽  
pp. 484-488 ◽  
Author(s):  
Georges M. G. M. Verjans ◽  
Lies Remeijer ◽  
Robert S. van Binnendijk ◽  
José G. C. Cornelissen ◽  
Hennie J. Völker‐Dieben ◽  
...  

2017 ◽  
Vol 91 (12) ◽  
Author(s):  
Fumio Maeda ◽  
Jun Arii ◽  
Yoshitaka Hirohata ◽  
Yuhei Maruzuru ◽  
Naoto Koyanagi ◽  
...  

ABSTRACT Upon herpes simplex virus 1 (HSV-1) infection, the CD98 heavy chain (CD98hc) is redistributed around the nuclear membrane (NM), where it promotes viral de-envelopment during the nuclear egress of nucleocapsids. In this study, we attempted to identify the factor(s) involved in CD98hc accumulation and demonstrated the following: (i) the null mutation of HSV-1 UL34 caused specific dispersion throughout the cytoplasm of CD98hc and the HSV-1 de-envelopment regulators, glycoproteins B and H (gB and gH); (ii) as observed with CD98hc, gB, and gH, wild-type HSV-1 infection caused redistribution of the endoplasmic reticulum (ER) markers calnexin and ERp57 around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of these markers; (iii) the ER markers colocalized efficiently with CD98hc, gB, and gH in the presence and absence of UL34 in HSV-1-infected cells; (iv) at the ultrastructural level, wild-type HSV-1 infection caused ER compression around the NM, whereas the UL34-null mutation caused cytoplasmic dispersion of the ER; and (v) the UL34-null mutation significantly decreased the colocalization efficiency of lamin protein markers of the NM with CD98hc and gB. Collectively, these results indicate that HSV-1 infection causes redistribution of the ER around the NM, with resulting accumulation of ER-associated CD98hc, gB, and gH around the NM and that UL34 is required for ER redistribution, as well as for efficient recruitment to the NM of the ER-associated de-envelopment factors. Our study suggests that HSV-1 induces remodeling of the global ER architecture for recruitment of regulators mediating viral nuclear egress to the NM. IMPORTANCE The ER is an important cellular organelle that exists as a complex network extending throughout the cytoplasm. Although viruses often remodel the ER to facilitate viral replication, information on the effects of herpesvirus infections on ER morphological integrity is limited. Here, we showed that HSV-1 infection led to compression of the global ER architecture around the NM, resulting in accumulation of ER-associated regulators associated with nuclear egress of HSV-1 nucleocapsids. We also identified HSV-1 UL34 as a viral factor that mediated ER remodeling. Furthermore, we demonstrated that UL34 was required for efficient targeting of these regulators to the NM. To our knowledge, this is the first report showing that a herpesvirus remodels ER global architecture. Our study also provides insight into the mechanism by which the regulators for HSV-1 nuclear egress are recruited to the NM, where this viral event occurs.


1995 ◽  
Vol 2 (11) ◽  
pp. 1026-1030 ◽  
Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
Jacqueline D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document